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Improved Design of Microphone-Array Hearing Aids 

by 

Julie Elise Greenberg 

Submitted to the Harvard-MIT Division of Health Sciences and Technology 
on August 31, 1994, in partial fulfillment of the requirements 

for the Degree of Doctor of Philosophy 

Abstract 

A common complaint of hearing-aid users is the difficulty encountered when listening 
to a talker in a noisy environment. Conventional hearing aids amplify all sounds 
without discriminating between the desired source (target) and background noises 
(jammers). These devices increase the overall sound levels, but do nothing to im- 
prove target-to-jammer ratio (TJR). Research on microphone-array hearing aids is 
motivated by the lack of success of single-microphone systems, as well as the docu- 
mented advantages of binaural hearing and multiple-element sensing systems. 

Array processing can be classified as either fixed (time invariant) or adaptive (time 
varying). Previous work on microphone-array hearing aids has demonstrated that un- 
der certain conditions, adaptive arrays can provide significantly better performance 
than simpler fixed arrays. The benefit of adaptive systems is realized when the in- 
put TJR is low and when the signals arriving via direct paths are stronger than the 
reflections. This benefit is reduced or eliminated at high TJR or in strong reverbera- 
tion. This work studies modified adaptive algorithms to improve performance at high 
TJR and in reverberation; it also provides complete specifications for the design of 
an adaptive microphone-array hearing aid. 

In particular, two previously proposed ad hoc methods for controlling adaptation 
at high TJR are analyzed and evaluated. The results confirm the usefulness of these 
methods and provide guidelines for selecting relevant parameters in anechoic and 
reverberant environments. In addition, an analysis of the specific causes of target 
cancellation in reverberation reveals that a simple set of parameter choices can solve 
this problem. 

Computer simulations of the complete system demonstrate its benefits in a variety 
of acoustic environments. Steady-state results show that the system provides very 
large improvements in relatively anechoic environments. Substantial benefits are pro- 
vided in moderate reverberation, particularly if relatively long filters (~ 100 ms) are 
used. In extreme reverberation, performance is comparable to that obtained with the 
underlying non-adaptive microphone array. Transient results indicate that conver- 
gence is sufficiently rapid for processing speech signals. The number of microphones 
required in a practical system and the use of directional microphones are discussed. 

Thesis Supervisor: Patrick M. Zurek 
Title: Principal Research Scientist, Research Laboratory of Electronics 
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Chapter 1 

Introduction 

A common complaint of hearing-aid users is the difficulty encountered in listening 

to talkers in noisy environments (Plomp, 1978; Smedley and Schow, 1990). Con- 

ventional hearing aids amplify all sounds without discriminating between the desired 

source (target) and background noises (jammers). These devices increase the over- 

all sound levels, but do nothing to improve target-to-jammer ratio (TJR). A variety 

of techniques have been investigated for single-microphone speech enhancement, but 

none of these techniques has improved speech intelligibility in the presence of broad- 

band jammers such as competing speech (Lim and Oppenheim, 1979; Weiss and 

Neuman, 1993; Dillon and Lovegrove, 1993). The lack of success of single microphone 

systems, together with the documented advantages of binaural hearing and, more 

generally, multiple-element sensing systems, has led to substantial research interest 

in microphone-array hearing aids. 

The ideal hearing aid is one that replaces the functions of normal binaural hearing, 

providing a signal or signals that allow the listener to focus on one source while si- 

multaneously monitoring other directions (Durlach and Colburn, 1978). An artificial 

system to replace binaural capabilities could be composed of two stages. The first 

stage would decompose the acoustic environment into directional channels, each con- 

taining an isolated signal emanating from a particular direction. The second stage 

then consists of a coding scheme that would allow the user to focus on any single 

channel while simultaneously monitoring all other channels. 



A necessary component of the ideal hearing aid, and one that would be useful in 

its own right, is a system that maximizes the target-to-jammer ratio (TJR) assuming 

a known target direction. Even in the absence of schemes for separating and coding 

multiple directional sources, this component of the first stage could be incorporated 

in a system with user controls for steering to a selected target direction, or in which 

the target direction is fixed. 

Previous research has demonstrated that adaptive microphone-array systems have 

potential as an effective way to perform this signal extraction (Greenberg and Zurek, 

1992). However, several pressing problems remain that must be addressed before 

microphone arrays can perform successfully in a variety of acoustic environments. 

This thesis proposes solutions to those problems and demonstrates their effectiveness 

with computer simulations. The goal of this work is the development of a practical 

system for microphone-array hearing aids. 

Although the focus of this thesis is the improvement of conventional hearing aids, 

the results are applicable to other aids such as cochlear implants. More generally, 

the system described in this thesis may be of use in any situation where reduction 

of interference from spatially-separated sound sources is required. Examples of such 

situations include general microphone systems, hands-free telephones, teleconference 

systems, and automatic speech recognition devices. 

The remainder of this thesis is organized as follows. Chapter 2 reviews relevant 

signal processing concepts and previous work on microphone-array hearing aids. It 

also contains a summary of problems identified by previous work and motivations 

for the solutions investigated in the following chapters. Chapter 3 describes methods 

common to several aspects of the current work, including source materials, simulated 

rooms, and the performance metric. Chapters 4-6 each address a particular issue with 

implications for designing microphone-array hearing aids. The results of these three 

chapters specify a modified adaptive algorithm that is subsequently implemented 

in computer simulations. The results of those simulations are presented in Ch. 7, 

illustrating the performance that can be obtained with adaptive microphone-array 

systems in a variety of acoustic environments. Chapter 8 contains a discussion that 
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includes recommendations for future work, and Ch. 9 consists of a summary and 

conclusions. 



Chapter 2 

Background 

2.1     Array Processing 

This section provides a brief description of signal processing concepts and terminology- 

relevant to this work. A thorough presentation of array processing, beamforming, and 

adaptive signal processing can be found in the extensive literature available on these 

subjects (e.g., Van Veen and Buckley, 1988; Widrow and Stearns, 1985; Monzingo 

and Miller, 1980; Haykin, 1985; Haykin, 1986; Johnson and Dudgeon, 1993). 

The bulk of research concerning the design and analysis of array processors has 

been for applications in radar, sonar, and geophysics. Although the basic princi- 

ples and some algorithms from these fields are applicable to the hearing-aid problem, 

several significant differences exist. First, in hearing aids the signals are speech, a 

broadband signal, while much of the array processing literature is restricted to the 

somewhat simpler narrowband case. Second, assuming that cosmetic considerations 

limit the design to head-sized arrays, for the hearing-aid problem the spatial aper- 

ture will be small relative to the wavelengths of interest. Furthermore, whereas in 

some fields the concept of multipath refers to a small number of reflections with sub- 

stantially less energy than the direct signal, in a typical room the reverberant sound 

arrives from countless directions and may have significantly more energy than the 

direct sound. And finally, although this work does not directly address the issues 

of implementing an algorithm in a practical hearing aid, necessary restrictions on 
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processor size and power consumption will ultimately impose severe limitations on 

computational complexity in a wearable device. 

Recent literature does contain some applications of microphone arrays to speech 

processing. In addition to hearing aids, these applications include hands-free tele- 

phony (Goulding and Bird, 1990; Claesson et al., 1991; Grenier, 1993), preprocessing 

for speech recognition (Van Compernolle et al., 1991; Parry, 1990), cockpit communi- 

cation systems (Harrison et al., 1986), and general microphone systems (Kaneda and 

Ohga, 1986; Lu and Clarkson, 1993; Flanagan et al., 1991). 

Array processors can be classified as either fixed or adaptive. Fixed or data- 

independent processing applies fixed filters to each microphone signal and sums the 

results to produce a single output. The weights are typically selected to optimize 

a quantity such as directivity (the array's response to a signal from straight ahead 

relative to its diffuse-field response). On the other hand, adaptive processors uti- 

lize time-varying filters that are adjusted to approach a statistical optimum (in a 

least-squares sense) while tracking changes in the environment. Adaptive processing 

usually requires more intensive computation than fixed processing, but may provide 

better performance against directional and time-varying jammers. The advantage of 

adaptive processing is realized if the underlying optimum processor outperforms a 

fixed processor with an equal number of sensors and if the non-stationarity in the 

environment is slow relative to the time required for the adaptive algorithm to con- 

verge. 

The choice of the optimality criterion for an adaptive system is dictated by the 

information assumed to be available about the signals and the environment. Peter- 

son (1989) showed that many different optimum processors (minimum mean-square 

error, maximum a posteriori probability, maximum likelihood, and minimum vari- 

ance) are identical to within a scalar function of frequency dependent only on the 

assumed a priori knowledge of the target and jammer spectra. Two adaptive systems 

often considered for use in the hearing aid application are the adaptive noise can- 

celler (Widrow, et al., 1975) and the linearly constrained minimum variance (LCMV) 

beamformer (Frost, 1972).  The adaptive noise canceller (ANC) requires a reference 
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signal related to the jammer, but free of target. The LCMV beamformer requires 

that the target direction is known and that the target signal is uncorrelated with all 

jammer signals. 

A block diagram of the adaptive noise canceller is shown in Figure 2.1. This system 

requires two inputs, a primary signal that contains target plus jammer and a reference 

signal that ideally contains a filtered version of the jammer only. An adaptive filter 

then operates on the reference input using the LMS algorithm (Widrow and Stearns, 

1985) to minimize the total output power of the system. If the reference contains no 

target and if the target and jammer are uncorrelated, minimizing the total output 

power is equivalent to minimizing the jammer power. For the hearing-aid application, 

it is usually not possible to obtain a reference signal that is perfectly free of target. 

Instead, the reference signal is obtained from either a directional microphone pointed 

away from the target or a remote microphone placed close to the noise source. Any 

'leakage' of the target into the reference channel can lead to cancellation of the target, 

a situation to be avoided. Although the results of previous work with adaptive noise 

cancellers can provide insight into issues relevant to the design of microphone-array 

hearing aids, this work will only consider systems that do not require a 'target-free' 

reference signal. 

The LCMV beamformer assumes that the direction of the target signal is known, 

and that the target and jammer signals are uncorrelated. The weights are adjusted to 

minimize output power subject to constraints that apply a specified filter to the signal 

arriving from the target direction. The two basic structures used to implement LCMV 

beamforming are the linearly constrained adaptive array processor (Frost, 1972) and 

the generalized sidelobe canceller (Griffiths and Jim, 1982), shown in Figs. 2.2 and 

2.3. For simplicity, the implementations in the figures do not show the initial stage 

of time-delay steering required to align the array to the target signal. 

The structure used to implement Frost's linearly constrained adaptive array pro- 

cessor consists of a tapped delay line for each microphone signal. There is a single 

adaptive weight associated with each tap, and the output consists of the sum of all 

weighted tap values.  The adaptive weights are updated by an iterative constrained 

12 
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Figure 2-1: Block diagram of adaptive noise canceller. The two inputs are a primary 
signal, containing filtered versions of the target and jammer sources, and a reference 
signal, containing a different filtered version of the jammer. The reference signal is 
the input to an L-point adaptive filter. The adaptive noise canceller output, y[n], 
is the difference between the delayed primary signal and the output of the adaptive 
filter. The adaptive weights, Wk[n] for k = 0,' •• ,L — 1, are adjusted to minimize 
the total output power, which, under ideal conditions, preserves the target signal and 
minimizes the jammer output power. 
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Figure 2-2: Block diagram of linearly constrained adaptive array processor. Each 
microphone signal is processed by a tapped delay line with adaptive weights updated 
by an iterative constrained minimization algorithm. 
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Figure 2-3: Block diagram of generalized sidelobe canceller. The upper channel im- 
poses fixed constraints, while the lower channel consists of a blocking matrix that 
removes the target signal, followed by adaptive filters that perform unconstrained 
minimization on the remaining signals. 
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minimization algorithm. The constraints are selected to provide the desired response 

for signals arriving from the target direction (typically unity gain). 

The generalized sidelobe canceller proposed by Griffiths and Jim (1982) consists 

of two substructures that together act to minimize the total output power subject 

to the constraints. The upper channel forms a weighted sum of the sensor signals 

(essentially a fixed array processor), and then processes this sum by an FIR filter 

that imposes the desired filtering described by the constraints (again, typically unity 

gain). The lower channel consists of a blocking matrix that combines the sensor 

signals so as to remove the target signal, followed by an adaptive algorithm that 

performs unconstrained minimization on the remaining signals. Equivalence of the 

Frost and Griffiths-Jim processors can be shown for a variety of conditions (Griffiths 

and Jim, 1982). 

Figure 2.4 shows a simple and useful form of the generalized sidelobe canceller, 

again assuming that the target signal was previously equalized across microphones. 

In this case, the constraints consist of averaging the M microphone signals and then 

delaying that primary signal by D samples. The purpose of the delay is to permit 

the adaptive filter in the lower channel to form non-causal responses (Widrow and 

Stearns, 1985). The blocking matrix consists of taking the difference between pairs of 

microphone signals to produce M — 1 target-free reference signals. For any combina- 

tion of pairs selected so that the blocking matrix has full rank, the optimal solution 

for the adaptive weights will be identical. 

There is a wide variety of adaptive algorithms available for implementing the 

unconstrained minimization required by the generalized sidelobe canceller. The LMS 

algorithm is often used because of its simplicity. When the LMS algorithm is used in 

conjunction with a two-microphone version of the generalized sidelobe canceller shown 

in Fig. 2.4, the system is equivalent to a preprocessor consisting of taking the sum 

and difference of the microphone signals, followed by an adaptive noise canceller. In 

any case, steering errors or imperfections in the blocking matrix can cause leakage of 

the target signal into the reference signal, resulting in target cancellation as described 

above in conjunction with the adaptive noise canceller. 
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Figure 2-4: Block diagram of a simple generalized sidelobe canceller with M micro- 
phones. The fixed constraints in the upper channel preserve the target by averaging 
the microphone signals and delaying the result. The blocking matrix is implemented 
in the lower channel by taking the difference between pairs of microphone signals. 
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2.2    Microphone-array hearing aids 

2.2.1     Fixed array processors 

Previous work has established the potential benefits of fixed arrays for the hearing- 

aid application (Peterson, 1989; Soede et al., 1993a,b; Stadler and Rabinowitz, 1993; 

Kates, 1993). Peterson (1989) considered the performance of both fixed and adaptive 

arrays; that work is discussed in Sec. 2.2.2. 

Soede et al. (1993a,b) designed, constructed, and evaluated fixed arrays for use 

as hearing aids. They considered linear arrays consisting of five evenly-spaced cardioid 

microphones mounted on eyeglass frames in both broadside and endfire configurations.1 

Physical measurements showed that these arrays provide gains in signal-to-noise ratio 

of 6-7 dB in diffuse noise. Intelligibility tests with hearing-impaired listeners showed 

improvements of 7 dB in the speech reception threshold. 

Stadler and Rabinowitz (1993) also considered linear broadside and endfire ar- 

rays. They applied sensitivity-constrained optimum beamforming (Cox et al., 1986) 

to fixed arrays with directional microphone elements, providing a design method that 

controls the tradeoff between directionality and noise sensitivity. They computed the 

theoretical performance of these arrays in free space for various numbers and types 

of microphones. Their results predict gains comparable to those seen by Soede et 

al. (1993a,b) for the same array configurations. For endfire arrays, their results show 

that using frequency-dependent weights with four or five microphones provides di- 

rectivities of 8-10 dB, regardless of the type of microphone. For broadside arrays, 

directional microphones provide a clear advantage, but there is little advantage to 

using frequency-dependent weights. A broadside array of two or five cardioid or su- 

percardioid elements with uniform weights (simply averaging the microphone signals) 

provides directivities of 7-8 dB. Although the directivity of these broadside arrays is 

roughly constant for 2-5 microphones, increasing the number of microphones reduces 

the noise sensitivity, making the system more robust. 

1 Microphones in a broadside array form a line perpendicular to the target direction, while mi- 
crophones in an endfire array are colinear with the target direction. 
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2.2.2    Adaptive array processors 

A number of researchers have considered adaptive microphone-array systems for ap- 

plication to hearing aids (Weiss, 1987; Schwander and Levitt, 1987; Chabries et al., 

1987; Brey et al., 1987; Chazan et al., 1987; Peterson, 1989; Peterson et al., 1990; 

Van Compernolle, 1990a; Farassopoulos, 1992; Greenberg and Zurek, 1992; DiDier 

et al., 1993; Kohlmeier et al., 1993; Hoffman et al., 1994; Link, 1994). Unlike fixed 

arrays, there are a variety of ways to design, implement, and evaluate these adaptive 

processors, which hinders comparisons among the different studies. Some of these 

systems are based on the adaptive noise canceller and require a target-free reference 

signal, and many are restricted to two-microphone arrays. In general, the results of 

these studies indicate that adaptive microphone array systems provide substantial 

benefits under certain conditions. 

Peterson (1989) calculated the optimum performance of LCMV beamformers in 

the presence of directional and isotropic noise for head-sized free-space arrays based 

on unlimited filter length. He considered how performance varies with the number of 

sensors, internal sensor noise, array dimension, and array orientation. His results show 

that in general, the performance of arrays designed to provide equal noise sensitivity 

increases with the number of microphones, but, for head-sized arrays and realistic 

levels of sensor noise, performance saturates and the improvement is negligible beyond 

4-6 microphones. Once the number of microphones exceeds the number of directional 

jammers, little or no additional benefit is obtained from adding more microphones. 

Performance also increases with array length, except for arrays with a small number 

of microphones where spatial undersampling occurs in the long arrays. 

Most previous studies have considered relatively simple adaptive systems based 

on two microphones. The performance of two-microphone systems decreases dramat- 

ically when a second jammer source is introduced (Weiss, 1987; Peterson et al., 1990). 

In theory, a system with M microphones can create M — 1 independent broadband 

nulls, and therefore can effectively cancel M — 1 independent directional jammers. 

As a result, a two-microphone array is only expected to perform well against a single 

directional jammer. 
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Initial assessments have demonstrated the potential benefits of adaptive systems 

based on the generalized sidelobe canceller. (Peterson et a!., 1990; Greenberg and 

Zurek, 1992). These studies have shown that adaptive systems operating in anechoic 

environments can provide 20-30 dB improvement based on both physical measure- 

ments and intelligibility tests with normal-hearing listeners. Improvements of 3-15 

dB have been reported for a variety of moderately reverberant environments. 

2.3    Problems and proposed solutions 

Previous studies have identified a number of problems with adaptive array systems, 

and some have proposed solutions to those problems. The problems include misad- 

justment of the adaptive algorithm, misalignment due to nonideal conditions, and 

problems caused by reverberation. 

2.3.1     Misadjustment and misalignment 

Misadjustment of adaptive weights is an unavoidable result of any adaptive process 

using a stochastic gradient search such as the LMS algorithm. The misadjustment 

is defined as the ratio of mean-squared error caused by the adaptive process to the 

minimum mean-squared error produced by the optimal filter (Widrow and Stearns, 

1985). Because the adaptive weights are driven by the output of the system, when a 

strong target signal is present there are large steps in the weight update uncorrelated 

with the jammer being cancelled. This leads to reduced jammer cancellation at high 

TJRs. The effects of misadjustment are described in Peterson et al. (1990) and 

Greenberg and Zurek (1992). 

Another degrading effect is caused by misalignment of the array to the target 

source. If the array is not perfectly aligned to the target, then some target signal 

will leak through the constraints or the blocking matrix and can subsequently be 

cancelled by the adaptive process. Even if the target direction is known exactly and 

the array is perfectly steered, mismatched sensors and errors in sensor placement will 

cause misalignment.  The importance of target leakage was described by Widrow et 
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al. (1975) who showed that, for an unconstrained adaptive filter (one whose impulse 

response can extend infinitely in both time directions), the target-to-jammer ratio 

at the output equals the jammer-to-target ratio at the reference input. With any 

fixed, non-zero transfer function in the leakage path, the problem clearly worsens as 

the input TJR increases, leading to more target cancellation at higher TJRs. This 

degradation caused by target leakage is seen with TJRs as low as 0 dB, and is clearly 

detrimental at 10-20 dB (Peterson et al., 1990; Greenberg and Zurek, 1992). 

The degradations due to misadjustment and misalignment are both proportional 

to the TJR. Therefore, a general solution to these problems is based on controlling 

the adaptive process so that adaptation occurs only when the target signal is weak or 

absent. Greenberg and Zurek (1992) accomplish this with two methods for controlling 

adaptation at high TJR. Both methods exploit the fact that the target signal in this 

application - speech - exhibits a high degree of fluctuation, and, in fact, has pause 

periods when the target is absent. Both attempt to sense the TJR and to adapt only 

in intervals when the TJR is small. 

The first method is only effective when there is negligible leakage of the target 

signal. When this condition is met and the input TJR is high, the system output 

power will be greater than the power of the reference signal. The LMS weight update 

equation is modified to normalize the step-size parameter with the sum of the reference 

signal and output signal powers2 in order to reduce the size of target-induced weight 

fluctuations. (This method is explained in detail in Ch. 4.) The approach is similar 

to that taken by Duttweiler (1982) and Jeyendran and Reddy (1990). 

The second method employs intermicrophone correlation to determine the range of 

TJR . The straight-ahead target contributes a signal with correlation near unity, and 

off-axis jammers have a correlation that is less than unity and depends on frequency 

and direction. A running measure of the correlation between microphone signals will 

vary with TJR and can be used as an indicator of relative target strength. For each 

cycle of the adaptive algorithm, the correlation measure is compared to a threshold 

and the adaptive process is inhibited (the weights are frozen at their current values) 

2Traditionally, the step-size parameter is normalized by the reference signal power alone. 
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if the correlation exceeds the threshold. Other researchers have proposed similar 

mechanisms to disable the adaptive process in the presence of strong target signals 

(Van Compernolle, 1990a,b; Harrison et al., 1986; Kaneda and Ohga, 1986; Sondhi 

and Berkley, 1980; Dillier et al., 1993); they use various methods of estimating signal 

powers to determine when adaptation should be disabled. 

Both of these methods for controlling adaptation at high TJR were shown to be 

effective with a two-microphone generalized sidelobe canceller in an anechoic environ- 

ment. Using the two methods together significantly improved performance at high 

TJRs and eliminated degrading target cancellation. Although these two methods were 

shown to be effective, the resulting algorithms were not subject to thorough analy- 

sis and many of the parameters were selected in an ad hoc manner. In the current 

work, the two previously proposed methods of controlling adaptation are analyzed 

individually, formal methods are developed for parameter selection in anechoic and 

reverberant environments, and the performance of these methods is predicted and 

verified under simplified conditions before application to the more complex situation 

of speech in reverberation. Alternative methods for normalizing the step-size param- 

eter are analyzed in Ch. 4, and the use of intermicrophone correlation to determine 

the range of TJR is analyzed in Ch. 5. 

Hoffman (1992) proposed an alternate technique to prevent target cancellation due 

to misalignment, without addressing the problem of misadjustment. He developed 

a method for determining linear constraints plus a quadratic constraint for Frost's 

linearly constrained adaptive array processor to prevent target cancellation beyond 

an acceptable level (e.g., 3 dB). The constraints are based on a model of the sources of 

misalignment that the system must accommodate, for example, errors due to micro- 

phone locations. He demonstrates arrays of three, five, and seven microphones with 

8 and 16 taps per filter. Simulation results show gains of 10-20 dB in an anechoic 

environment and 5-10 dB in moderate reverberation. 
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2.3.2    Reverberation 

Previous work has shown that adaptive array processors provide some improvement 

in reverberant environments, but that the benefit decreases as the degree of reverber- 

ation increases. For some conditions, performance also decreases dramatically with 

increasing TJR. Reverberation limits adaptive system performance in two ways. The 

first is target cancellation resulting from violation of the system's fundamental as- 

sumptions. The second is reduced jammer cancellation due to increased complexity 

of the acoustic environment. 

Target cancellation 

As discussed in Sec. 2.1, the LCMV beamformer assumes that the target direction is 

known and that target and jammer are uncorrelated. Target signal reflections vio- 

late one of these two assumptions. If the reflected target signal is considered target, 

then the assumption of known target direction is violated. On the other hand, if 

the reflected target is considered jammer, the assumption of uncorrelated target and 

jammer is violated. Taking the latter view, it is instructive to consider the optimum 

performance of the LCMV beamformer in the presence of correlated interference. 

Reddy et al. (1987) considered the case of a narrowband target with a single jammer 

that is either partially or fully correlated with the target. Zoltowski (1988) extended 

the analysis to include multiple partially-correlated narrowband jammers. Their re- 

sults provide general expressions for the steady-state output power and quantify the 

target cancellation due to correlated jammers. In general, as the correlation increases 

between target and jammer signals, the LCMV beamformer exhibits progressive de- 

terioration in performance due to both diminished jammer rejection and increased 

target cancellation. 

Some researchers have proposed methods to overcome the problem of multipath 

or correlated jammers, but for the most part they have addressed the simpler problem 

of a small number of reflections encountered in other applications. For example, one 

approach is to include a model of the multipath in the design and null the reflections 

before they enter the adaptive processor (Owsley, 1985).    Obviously, this is only 
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appropriate when an accurate model of the multipath exists and is not applicable to 

acoustic reflections in arbitrary rooms. 

A more general approach to the problem of correlated jammers is spatial dither- 

ing, intended to eliminate the correlation between the on-axis target and its off-axis 

reflections. This was first suggested by Widrow et al. (1982) who proposed mechan- 

ically moving the sensor array along a line perpendicular to the direction of arrival 

of the desired signal. Shan and Kailath (1985) proposed a method called spatial 

smoothing to accomplish the dithering. Spatial smoothing uses subarrays of the total 

sensors and requires twice as many sensors as correlated signal sources, meaning that 

in theory the system requires twice as many microphones as the number of target re- 

flections. Hoffman et al. (1991) propose a method of virtual dithering that performs 

spatial smoothing by applying matrix transformations to a number of sensor signals 

and therefore does not require extra physical sensors. However, their work does not 

indicate how many virtual transformations need to be performed or if that number 

is related to the number of target reflections as in spatial smoothing. Both spatial 

smoothing and virtual dithering were demonstrated to work for a small number of 

narrowband correlated jammers. The problem is that in a reverberant environment, 

the number of reflections will outnumber the number of microphones or, in the case 

of virtual dithering, the number of matrix transformations that can feasibly be per- 

formed. In order to demonstrate that these techniques have any potential for the 

hearing aid application, they must first be analyzed in situations where the target 

reflections outnumber the microphones. 

Hoffman et al. (1994) suggest a simple solution to the problems caused by target 

reflections; they note that appropriate selection of the parameters of the generalized 

sidelobe canceller (in particular, setting the primary delay to zero) will prevent target 

cancellation. This idea will be analyzed and extended in Ch. 6. 

Reduced jammer cancellation 

Reduced jammer cancellation can be examined by considering the performance of 

LCMV beamformers against a single reverberant jammer in the absence of a target 
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signal. Because the system can operate only over the time-span of the adaptive filter, 

jammer cancellation is impaired when the room impulse response exceeds that span.3 

This effect is illustrated in Greenberg and Zurek (1992) for a two-microphone gen- 

eralized sidelobe canceller with two filter lengths in a variety of reverberant environ- 

ments. The results show that although extremely long filters may provide substantial 

improvement in strong reverberation, the filter lengths currently attainable with a 

practical system only provide significant improvements at source-to-array distances 

less than the critical distance of the room. 

When the filter length is short relative to the impulse response of the room, late 

reflections arriving at the array will be uncorrelated with the data in the filter. There- 

fore, the adaptive filter will not be of any use in cancelling the late reflections. Fur- 

thermore, it is reasonable to assume that the late reflections are equally likely to arrive 

from all directions. In this situation, the late reflections can be modeled accurately 

as isotropic noise (Beranek, 1954; Cremer and Müller, 1982). An array designed to 

perform optimally against isotropic noise has maximum directivity (Peterson, 1989), 

which is typically the design criterion for fixed array processors. 

In terms of the generalized sidelobe canceller (Figs. 2.3 and 2.4), as reverberation 

increases, the reference signals at the adaptive filter inputs become progressively less 

correlated with the primary signal in the upper channel. In the extreme, they are 

completely uncorrelated and the adaptive filter weights tend to zero. In this case, 

the system output simply equals the primary signal, and the performance of the 

system depends on the fixed processor defined by the constraints. Therefore, in order 

to design an adaptive system that performs optimally in extreme reverberation, the 

constraints should define an underlying fixed processor with maximum directivity. 

The design choices that affect the fixed processor performance are the number of 

microphones, their directional characteristics, and the weights implemented in the 

constraints. These issues will be discussed in Chs. 7 and 8. 

3Strictly speaking, the impulse response is infinitely long for any real room. Here, the length of 
the room impulse response refers to the length of time that non-negligible reflections continue to 
propagate after the direct sound. For example, this measure could be the reverberation time of the 
room (time required for reflections to decay 60 dB relative to the direct power). 
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It is important to note that obtaining the benefits of the underlying fixed proces- 

sor in extreme reverberation does not require any additional processing effort; rather, 

it is obtained automatically when the adaptive weights cannot further minimize the 

output power. In some sense, the system can be thought of as a hybrid fixed/adaptive 

array processor, where the fixed weights (constraints) provide a desired default re- 

sponse in the absence of directional jammers, while the adaptive process utilizes the 

degrees of freedom in the adaptive weights to reduce directional jammers when pos- 

sible. The result is a system that maximizes directivity when reverberation is strong, 

yet allows adaptation to provide the additional benefit obtained from cancelling di- 

rectional jammers in less reverberant environments. 

2.4     Goals 

The goals of this work are to completely specify the algorithm for use in adaptive 

microphone-array hearing aids and to demonstrate the benefits provided by such 

systems in a variety of acoustic environments. The algorithm includes several features 

to ensure robustness at high TJR and in reverberation. In particular, the goals of 

this work are: 

To provide a thorough analysis of the two ad hoc methods for controlling adap- 

tation proposed by Greenberg and Zurek (1992). This analysis will result in 

guidelines for selecting relevant parameters and also will facilitate comparison 

to similar methods proposed by other researchers. 

To analyze the specific causes of target cancellation in reverberation and to ex- 

plain and extend previously suggested (Hoffman et al., 1994) parameter choices 

to eliminate this problem. 

• To establish the usefulness of each of these methods individually via simple 

simulations that isolate the relevant effects. 

• To demonstrate the effectiveness of the modified algorithm by combining these 

methods in computer simulations and evaluating performance under a range of 
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acoustic conditions.  These simulations will also investigate selection of design 

parameters such as the adaptive filter length and the number of microphones. 
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Chapter 3 

Methods 

The purpose of this chapter is to introduce several elements that are common to the 

analyses and simulations performed in Chs. 4-7. 

3.1 Source materials 

Since speech is the signal of interest in the hearing aid application, it will be necessary 

to evaluate systems using speech or speech-like signals. When possible, initial assess- 

ments use uncorrelated zero-mean white Gaussian noise for the target and jammer 

signals. When more realistic source signals are required, the target signal consists 

of a series of phonetically-balanced sentences (IEEE, 1969) spoken by a single male 

talker and the jammer signal consists of 12-talker SPIN babble (Kalikow et al, 1977). 

These sources were obtained from anechoic recordings that were digitized, sampled 

at 10 kHz, and approximately whitened with high frequency emphasis of 6 dB/octave 

(Link and Buckley, 1993). 

3.2 Room simulations 

Convolving the source materials with source-to-microphone impulse responses pro- 

duces microphone signals appropriate for input to the systems of interest. Those 

impulse responses can be obtained from recordings made in real rooms, or from a 
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room simulation. This work uses source-to-microphone impulse responses generated 

by a simulation of free-space microphones in a rectangular room with specifiable di- 

mensions and uniform surface absorption (Peterson, 1986). 

The following analyses and simulations utilize a single room. Its dimensions are 

5.2 x 3.4 x 2.8 meters. This is slightly larger than the 'living room' used by Peterson 

(1989). One corner of the room is the origin of a three dimensional coordinate system 

with the room oriented squarely with three orthogonal planes. The center of the array 

is at (2.755, 1.380, 1.600) meters, and the array is oriented along the straight line 

defined by the array center and the point (2.685, 1.400, 1.600) meters. All sources 

are located around the array center in a circle in the horizontal plane with radius 

0.9 meters at a height of 1.7 meters. A source at zero degrees is located at array 

broadside in the direction of positive coordinates from the array, and positive source 

angles refer to clockwise progression from zero when viewed from above. 

Two linear broadside arrays of omnidirectional elements will be investigated. The 

first is 7 cm in length with two microphones. This array was selected because of 

its promising performance in earlier work (Greenberg and Zurek, 1992), and because 

of a desire to investigate a relatively simple system (two microphones). The second 

array is 16 cm in length with 5 microphones uniformly spaced, resulting in 4 cm 

intermicrophone spacing. The array length was selected to be roughly 'head-sized', 

and the number of microphones was selected to prevent spatial undersampling for 

frequencies below 5 kHz when evenly spaced throughout that length. 

These arrays are simulated in free space, but in real applications they will be placed 

on or near the listener's head. Although the presence of the head affects the structure 

of the signals received at the array, it has little effect on the resulting performance 

of broadside arrays (Greenberg and Zurek, 1992; Soede et al., 1993a). Previous work 

(Greenberg and Zurek, 1992) has shown that endfire arrays are much more sensitive 

to the presence of the head; therefore this work only considers broadside arrays. 

For both the two- and five-microphone arrays described above, three values of 

the uniform surface absorption are used in the room simulation to generate source- 

to-microphone impulse responses with different degrees of reverberation.  The three 
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absorption values are 1.0 (anechoic), 0.6, and 0.2. For the room described above, 

the moderately reverberant room had a direct-to-reverberant ratio of +6 dB and a 

reverberation time of 150 ms, while the more strongly reverberant room had a direct- 

to-reverberant ratio of —2 dB and a reverberation time of 620 ms. Representative 

source-to-microphone impulse responses are shown in a later chapter (Fig. 6.2). 

3.3    Performance metric 

Since the purpose of these systems is to improve the intelligibility of speech, the ulti- 

mate test of their effectiveness comes from tests of intelligibility with human subjects. 

However, such tests are time-consuming and do not allow rapid evaluations of many 

algorithms and parameter choices. For efficiency, previous work has used a physi- 

cal measure, the intelligibility-weighted gain, for preliminary assessment of system 

performance. This section summarizes the computation of the intelligibility-weighted 

gain, denoted Gi, as described elsewhere (Peterson, 1989; Greenberg and Zurek, 1992; 

Greenberg et al., 1993). 

Gi is based on the intelligibility-weighted level, T(s), given by 

T(s) = '£ajBj(s), (3.1) 
i 

where Bj(s) is the decibel level in the jth frequency band of the signal s and a,j is the 

weight reflecting the contribution of that band to intelligibility. In principle, these 

measures can be based on any index designed to predict intelligibility. In this work, 

Gj is based on the Articulation Index (ANSI, 1969; Kryter, 1962) with the weights, 

dj, reflecting the contribution of each one-third-octave band to intelligibility. 

The absolute values of these intelligibility-weighted levels depend on the reference 

level and are therefore arbitrary. However, they can be used to make comparisons 

between signals. For these comparisons, there are four signals of interest: target 

input, Ti\ target output, T0; jammer input, Ji\ jammer output, J0. The improvement 
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from input to output in target and jammer is given by 

AT{T) = T(T0) - T(T{) (3.2) 

and 

AT(J) = T(Ji) - T(J0). (3.3) 

Positive values indicate improved intelligibility (amplification of the target or atten- 

uation of the jammer), while negative values indicate degraded intelligibility (atten- 

uation of the target or amplification of the jammer). Gi is then given by the overall 

intelligibility-weighted gain in TJR from input to output, 

Gj = Ar(r) + Ar(j) (3.4) 

= r(To)-r(T0 + r(J0 + r(jo). (3.5) 

Other useful measures are obtained by combining values of T for the input and 

output components separately, resulting in measures of intelligibility-weighted target- 

to-jammer ratio at the input and output of the system.   These measures are given 

by 

TJR7iin = T(Ti) - T{Ji) (3.6) 

and 

TJR7)OUt = r(r0) - T{J0), (3.7) 

and can also be combined to determine the intelligibility-weighted gain according to 

Gi = TJR/iOUt — TJRj^in. (3.8) 

In order to calculate Gi, it is necessary to obtain separate target and jammer sig- 

nals at the system output. This is accomplished with a controlling processor and two 

yoked processors (Greenberg and Zurek, 1992). The controlling processor operates 

on the total input signal (target plus jammer) while each yoked processor has the 

31 



same structure as the controller, and processes either the target or jammer signal, T» 

or Jj. The adaptive filter weights of the yoked processor are copied exactly from the 

controlling processor. Because the filtering operation is linear, superposition holds 

and the total system output provided by the controlling processor equals the sum of 

the two yoked processor outputs, T0 and J0. 

Using additional yoked processors, this approach can be extended to investigate 

the effect of the system on other components of the input signals. For instance, by 

separating the direct wave from the reflections of the source-to-microphone impulse 

responses and convolving them individually with the same target source material, it 

is possible to obtain the direct and reflected target at the inputs, Tdii and TT>i, where 

Ti = Td,i + TTti. Using these signals as the inputs to additional yoked processors 

produces the direct and reflected target at the output, Tdi0 and Tr>0, where T0 = 

Td,o + TTi0. Applying intelligibility weighting to these signals provides an indication 

of how the system affects the direct target and the reflected target individually, that 

is, 

AT(Td) = V(Td>0) - T(Td>i) (3.9) 

and 

Ar(rr) = r(Tr,0) - r(rrii). (3.io) 

However, even though T; = Td>i + Tr>i and T0 = Tdi0 + Tr,0, AT(T) ^ AT{Td) + AT(Tr) 

because T(s) is a nonlinear function of the signal s. Also, these values will not 

be meaningful if the output includes cancellation of direct target based on target 

reflections. 

As defined here, the sign of Ar(Tr) suggests that target reflections contribute to 

intelligibility. In fact, early reflections (arriving within up to 50-95 ms of the direct 

wave) tend to improve intelligibility while later reflections tend to be detrimental to 

intelligibility (Cremer and Müller, 1982). To obtain more accurate treatment of the 

effect of late reflections, the calculation of intelligibility-weighted levels (3.1) could be 

modified to include the Speech Transmission Index (Steeneken and Houtgast, 1980; 

Houtgast et al., 1980).   Using the Articulation Index and computing Gj according 
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to (3.5) treats all target reflections as if they contribute to intelligibility. If only 

early reflections exist, then Gi is an accurate measure of the effect of the system on 

intelligibility. On the other hand, if only late reflections exist, then Gj underestimates 

intelligibility if the system attenuates the reflections (AT(TT) < 0), and overestimates 

intelligibility if the system amplifies the reflections (Ar(Tr) > 0). In reality, the target 

reflections consist of both early and late reflections, and the results in Ch. 7 show 

that Ar(Tr) is typically negative. Therefore, Gi is at best accurate, and at worst a 

conservative estimate of system performance. 

Finally, for assessing the performance of fixed systems in extreme reverberation 

approaching an isotropic field, it is useful to apply intelligibility-weighting to the 

directivity index (Peterson, 1989). The directivity index is defined as the ratio of the 

output power due to sounds from the target direction to the average output power 

due to sounds incident from all directions. Since the directivity index typically varies 

with frequency, a useful measure is the broadband intelligibility-weighted directivity, 

Z>r = 5>i^-, (3.11) 
i 

where Dj is the directivity index corresponding to the jth frequency band in units of 

decibels and a,j is the weight reflecting the contribution of that band to intelligibility 

as in (3.1). 
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Chapter 4 

Optimal step-size parameter for 

the LMS algorithm. 

4.1     Introduction 

This chapter is concerned with determining the optimal step-size parameter to use 

with the LMS algorithm. For simplicity, the analysis is performed for an adaptive 

noise canceller, but the results apply to the generalized sidelobe canceller implemen- 

tation of LCMV beamforming, because, as explained in Sec. 2.1, the generalized 

sidelobe canceller can be thought of as a preprocessor followed by an adaptive noise 

canceller. 

The optimal time-varying step-size parameter is defined as one that minimizes the 

steady-state excess mean-squared error (mse) due to the adaptive process. Realizable 

expressions for the step-size parameter based on quantities available to the adaptive 

processor are developed and their performance is compared to that obtained with 

the optimal (non-realizable) step-size parameter result. In addition, the resulting 

convergence time is determined for the optimal and realizable step-size parameters. 

The analysis begins with expressions for the behavior of the LMS algorithm that 

are available in the literature; these expressions are modified to include the effects of 

the target signal in the primary input to the adaptive noise canceller. It is shown 

that the traditional method of normalizing the step-size parameter leads to poor per- 
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formance in the presence of strong target signals. Next, an expression is derived for 

the step-size parameter that minimizes the steady-state excess mse of the adaptive 

noise canceller's output. However, this optimal step-size parameter cannot be im- 

plemented in a real system, since it requires knowledge of quantities that are not 

available. Instead, simplifying assumptions are made about the unknown quantities 

in order to obtain expressions for the step-size parameter that can be implemented 

in a real system. Three different expressions for the step-size parameter result from 

different sets of assumptions. 

The analysis described above produces five candidates for the step-size parameter 

in the LMS algorithm. The first is the value traditionally used, which ignores the 

presence of the target signal in the adaptive noise canceller's primary input. The sec- 

ond is the optimal value, which is of theoretical interest but cannot be implemented 

in a real system. The last three are the step-size parameters derived from the op- 

timal expression based on different simplifying assumptions. For each of these five 

expressions for the step-size parameter (traditional, optimal, and three methods based 

on simplifying assumptions) expressions are derived to characterize the steady-state 

excess mse and the transient behavior. 

The results are summarized in Table 4.1 on page 53. They show that the optimal 

step-size parameter results in a steady-state excess mse equal to zero. The traditional 

step-size parameter results in a steady-state excess mse that increases linearly with 

target signal power. The three new expressions for the step-size parameter result in 

values of steady-state excess mse that are nonzero, but preferable to the traditional 

method. Iterative expressions are determined to characterize the transient behavior 

of the adaptive process. These expressions permit comparisons between the differ- 

ent step-size parameter algorithms, but the expressions depend on relative signal 

strengths and the spread of the eigenvalues of the autocorrelation matrix of the ref- 

erence signal. For the most promising method, time constants are determined for 

exponential decays that approximate the transient behavior. 
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4.2    Background 

4.2.1    The adaptive noise canceller 

A block diagram of the adaptive noise canceller was shown in Fig. 2.I.1 The adaptive 

noise canceller requires two inputs. The primary input contains target plus jammer, 

denoted by t(n) + j(n), where n is the discrete-time index. The reference input 

contains a filtered version of the jammer, x(n), and is (ideally) free of target. The 

reference signal passes through an L-tap adaptive FIR filter, whose weights, wk{n) 

for A; = 0,..., L — 1, are adjusted to minimize the power in the output signal. This 

minimization is achieved by filtering x(n) to approximate j(n) and subtracting it 

from the primary signal. With the primary delay equal to zero, the output of the 

adaptive noise canceller, y(n), is given by 

L-l 

y(n) = t(n) + j{n) - ]T wk(n)x(n - k). (4.1) 
Jfe=0 

If the target and jammer are uncorrelated and the reference input contains no target, 

then minimizing the power in y(n) results in an output signal with t(n) perfectly 

preserved and the jammer power minimized. 

The analysis presented here is based on the following assumptions: 

1. The primary target and jammer signals are uncorrelated; t(n) is uncorrelated 

with j(n). 

2. There is no leakage of target signal into the reference input; t(n) is uncorrelated 

with x(n). 

3. The signals t(n), j{n), and x(n) are all real and zero-mean. 

4. The signals t(n), j(n), and x(n) are wide-sense stationary, that is, their second- 

order statistics are constant. This restriction is necessary to simplify the deriva- 

tion, but will be lifted in the subsequent interpretation of the results. 

1In the following analysis, the primary channel delay, D, is set to zero, but the results are 
applicable when the delay is nonzero as well. 
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The following definitions will simplify notation. Boldface lowercase and uppercase 

letters represent vectors and matrices, respectively, while T denotes transpose and 

E[ ] denotes expected value. The signal powers are denned as 

a\   =   E[t2(n)) (4.2) 

«i    =   £b»] (4-3) 

a-l   =   E[x\n)). (4.4) 

The data vector is 

x(n) = [x(n) x(n-l)   • • •   x(n - (L - 1))]T (4.5) 

with elements equal to the values in the tapped delay line of the adaptive filter. The 

weight vector is 

w(n) = [w0{n) wx(n)   •••   ™£_1(7i)]T (4.6) 

The data autocorrelation matrix and cross-correlation vector are given by 

E[x(n)xT(n)} = R (4.7) 

and 

E[x(n)j(n)],= p, (4.8) 

while from the second assumption, 

E[x(n)t{n)] = 0, (4.9) 

where 0 is the vector of L zeros. The autocorrelation matrix R is symmetric, Toeplitz, 

and positive definite (Haykin, 1986). The eigenvalues of R are positive and are 

denoted Aj for i =  1,...,L.    The diagonal entries of R equal a\ and, from the 
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definition of the trace of a matrix (Strang, 1988), 

f> = tr[R] = £<r*, (4.10) 
i=i 

where tr[ ] denotes the trace of a matrix. 

The optimal values for the adaptive weights, w*, are given by the solution to the 

Wiener-Hopf equation (Widrow and Stearns, 1985), 

w* = Kr1?. (4.11) 

The error signal, e(n), is the difference between the actual output and the desired 

output, that is, 

e(n) = y(n) - t(n) = j(n) - wT(n)x(n), (4.12) 

where vector multiplication has replaced the summation in (4.1). The minimum error 

(in the mean-squared sense) is obtained when the adaptive weights are fixed at their 

optimal values so that 

emin(n)=i(n)-w*Tx(n). (4.13) 

The minimum error is uncorrelated with the reference input, that is, 

E[x(n)eiain(n)} = 0 (4.14) 

(Haykin, 1986). The mean-squared error associated with a particular weight vector, 

J(w), is given by 

J(w) = £[e2(70iw(n)=w] = a] - 2pTw + wrRw (4.15) 

and the minimum mse is 

J^ = E[e2(n)|w(n)=w.] = E[4JLn)] = a* - P
Tw* (4.16) 

(Haykin, 1986). 
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4.2.2    The LMS algorithm 

Definitions 

The problem of determining the optimal value of the adaptive weight vector, w*, can 

be interpreted geometrically by considering the mean-squared error as a function of 

the filter weights, J(w). This results in a concave-upward hyperparaboloid in (L +1)- 

dimensional space (Widrow and Stearns, 1985). The minimum of the hyperparaboloid 

corresponds to Jm\-n. Gradient search algorithms operate by determining or estimating 

the gradient of the error surface for the current value of the adaptive weights and 

iteratively modifying the weights to travel in the direction of the negative gradient in 

an attempt to reach the "bottom of the bowl". The (real) LMS algorithm (Widrow 

and Stearns, 1985) is a simple gradient search that uses the instantaneous value y2(n) 

as an estimate of ÜJ[e2(n)], which is equivalent to using the instantaneous values of 

x(ra)xr(n) and x(n)(t(n) + j{n)) as crude estimates of their expected values, R and 

p, respectively, required for the true gradient. The resulting weight update equation 

for the LMS algorithm is 

w(n + 1) = w(n) + py(n)x(n), (4.17) 

where y(n)x.(n) is an estimate of the negative gradient, and the parameter ft controls 

the size of the adaptive steps and has units of inverse power. 

Despite the widespread use of the LMS algorithm, there is no unconditional proof 

of its convergence (Widrow and Stearns, 1985). All known convergence proofs for the 

LMS algorithm require certain assumptions about the statistics of the inputs in order 

to make analysis of the algorithm mathematically tractable. One widely used set of 

assumptions is independence theory, which assumes the independence of successive 

data vectors. Using independence theory, it follows that the current weight vector 

depends on past values of the inputs, but is independent of the current inputs. The 

assumptions of independence theory are violated for many practical problems, includ- 

ing the adaptive noise canceller. Despite the violation of these assumptions, results 

predicted using independence theory are usually found to be in excellent agreement 
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with experiments and computer simulations (Haykin, 1986, p. 239). The assumptions 

of independence theory are used as needed throughout the remainder of this work. 

Using independence theory, the LMS algorithm converges if 

0 < A» < A (4.18) 
X 

(Widrow and Stearns, 1985). Typically, the step-size parameter is defined in terms 

of the dimensionless step-size parameter, a, which is related to fitTad,2 by 

a 
/Jtrad = -r-j. (4.19) 

Combining (4.18) and (4.19), the LMS algorithm converges for values of the dimen- 

sionless step-size parameter in the range 

0 < a < 2. (4.20) 

A closely related method is the normalized LMS (NLMS) algorithm, proposed 

by Nagumo and Noda (1967). The weights of the NLMS algorithm are updated 

according to 

w(. + l) = w(«) + .>rf.)pgjk), (4.21) 

where a is the dimensionless step-size parameter. The algorithm converges for values 

of the step-size parameter in the range 0 < a < 2. Comparing (4.21) to (4.17) reveals 

that the two algorithms are equivalent when 

" = ?öfeö- (422) 

Noting that E[xT (n)x(n)] = Lai an& comparing (4.22) with (4.19) reveals that the 

NLMS algorithm is equivalent to the LMS algorithm with the step-size parameter 

normalized according to (4.19) if the reference signal power, <rx, is estimated from the 

2The subscript is used to distinguish the traditional method of computing fj, from the methods 
that will be proposed in Sec. 4.3. 

40 



current data vector, x(n), at each iteration. 

Performance analysis 

When any adaptive algorithm is used, the weights vary with time, as does the associ- 

ated mse. An expression for J(n), the mse due to the LMS algorithm at time n, can 

be found by squaring (4.12) and taking its expected value,3 producing 

J{n) = E[e\n)] = J^ + £[vr(n)Rv(7l)]) (4.23) 

where the weight error vector, v(w) is defined as 

v(n) = w(rc)-w*. (4.24) 

The excess mse, JcJjn), is 

Jex{n) = J{n) -JIDin = E[vT{n)R-v(n)]. (4.25) 

and is nonzero when the weights deviate from their optimal values.4 Defining the 

weight error correlation matrix, 

K(n) = E[v(n)vT(n)}, (4.26) 

and using the property tr[AB] = tr[BA], yields 

Jex(n) = tr[RK(n)] (4.27) 

3Although (4.15) and (4.23) are both derived from (4.12), the two equations differ in that (4.15) 
is the constant mse based on an arbitrary, fixed weight vector, while (4.23) is the time-varying mse 
corresponding to the sequence of weight vectors determined by the LMS algorithm. 

4Note that the expectations in (4.23) and (4.25) are not expectations over time. Rather, they 
correspond to an ensemble average based on different input sequences selected at random from the 
same statistical population. Haykin (1986) uses the notation J(n) and Jex{n) to denote the value 
of the error based on the instantaneous weight vector and the expected value of the input vector, 
that is, Jex{n) = vT(n)Rv(n), and then gives later results in terms of E[Jex(n)]. In a subsequent 
edition, Haykin (1991) defines J(n) = E[e2(n)], which leads to J^n) = £[vT(n)Rv(n)]. The latter 
definition is used in this work, and appropriate substitutions are made when reproducing expressions 
from Haykin (1986). 

41 



(Haykin, 1986, Eq. 5.80). It can be shown that the expected value of the system 

output equals the sum of the target signal power, the minimum mse, and the excess 

mse, that is, 

E[y\n)] = <r2t + Jiain + J«(n). (4.28) 

A useful measure of steady-state performance is the steady-state excess mse, 

^ex(oo)- This quantity is non-zero for the LMS algorithm, because it reflects the 

error due to the ongoing adaptive process, that is, the fluctuation of the weights 

about their optimal values after they have converged in the mean. The steady-state 

ratio of excess mse to minimum mse 7 is referred to as mis adjustment. When the 

step-size parameter, /*, is small, both Jex(oo) and misadjustment are proportional to 

fi. However, it is not possible to make these quantities arbitrarily small by reducing 

(i, because the convergence time of the LMS algorithm is inversely proportional to fi. 

Selection of the step-size parameter, /z, in the LMS algorithm represents a fundamen- 

tal tradeoff between convergence time and steady-state error (Widrow and Stearns, 

1985). 

An expression for the steady-state excess mse, Jex(oo), for the traditional LMS 

algorithm with no target signal present is given by 

T    / \ Jmm/4 Z/t=l *i Jminfttr[Rj (A OQ\ 
Jcx(00) = 2-MtrEL* = 2^tepJ (4-29) 

(Nehorai and Malah, 1980; Haykin, 1986, Eq. 5.108). One modification to (4.29) is 

required before it can be applied to the adaptive noise canceller. The presence of the 

target signal, t(n), is standard for the adaptive noise canceller configuration, but is 

in contrast to the typical problem formulation for adaptive transversal filters and the 

usual assumptions governing derivation of the LMS algorithm. It can be shown that 

the presence of target in the primary signal does not affect the convergence of the 

mean weights to their optimal values, but the target signal does introduce additional 

noise in the gradient estimates, thereby affecting the weight-error correlation matrix 

and the steady-state excess mse. Following a derivation similar to the one in Haykin 
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(1986) but including the target signal, t(n), produces 

This expression differs from (4.29) only by the inclusion of of. It is intuitively satis- 

fying to see that the effects of the target signal and the minimum error signal (rep- 

resented by Jmm) are the same, since both of these signals are uncorrelated with the 

reference input [(4.9) and (4.14)], and both appear as noise in the adaptive process. 

For the traditional method of calculating the step-size parameter, replacing fi in 

(4.30) with (4.19) yields 

Jex(oo) = a(J^ + g"f2). (4.31) 

This result shows that for the traditional method of calculating the step-size param- 

eter, the steady-state excess mse is proportional to the target signal power, rendering 

the LMS algorithm ineffective in the presence of strong target signals. Although 

this is recognized as a shortcoming of the LMS algorithm in applications with strong 

target signals, the explicit relationship described by (4.31) is not well-known. 

4.3     Proposed methods of calculating the step-size 

parameter 

4.3.1     Derivation of the optimal step-size parameter 

Choice of quantity to optimize 

The goal is to optimize, in some sense, the step-size parameter, fi, in equation (4.17). 

This requires replacing the constant parameter, fi, with a time-varying quantity /j(n). 

The time-varying step-size parameter will be derived to minimize the expected value 

of an error measure at each iteration. Selection of the particular error measure is 

discussed below. 

This approach is based on the modification commonly made when o~\ is unknown 

a priori or when the second-order statistics of x{n) exhibit nonstationarities that vary 
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slowly with respect to n. In those cases, a\ is replaced by a running estimate of the 

power in the reference signal, <rl(n), and the constant ft in (4.17) is replaced by the 

time-varying quantity 

*n)=Lm (4-32) 

where the dimensionless step-size parameter, a, remains constant. The proposed 

modifications will use a similar approach, employing estimates of additional signal 

powers as necessary. 

Another motivation for this approach is the effect of strong target signals on the 

performance of the adaptive noise canceller. As shown in Sec. 4.2.2, the steady-state 

excess mse, Jex(oo), is proportional to the target power, <T\, as well as to the step- 

size parameter, ji. If the target signal exhibits short-term power fluctuations (as is 

characteristic of speech, for example), then the degrading effect of strong target signals 

can be mitigated by normalizing the step-size parameter with a short-time estimate of 

target power, so that the incremental adjustments to the adaptive weights are larger 

in intervals when the target is weak and smaller when the target is strong. 

In the following derivation, the error measure to be minimized is the expected 

value of the total weight error power, E[vT(n)v(n)], or equivalently tr[K(ra)], which 

is L times the mean-squared weight error. Rather than minimizing this quantity, it 

might be preferable to minimize the excess mean-squared output error Jc*(n), which, 

from (4.25) and (4.27), corresponds to minimizing E[vT(nyRv(n)], or equivalently, 

tr[K(n)R]. However, the expression for fi obtained by minimizing either E[vT(n)v(n)] 

or E[vT(n)Rv(n)] is only of theoretical interest, since it will require quantities not 

available to the adaptive processor. These two error measures have similar structures 

and are equivalent when R = I,5 where I is the L x L identity matrix. It will 

be shown that the step-size parameter that minimizes JE[vr(n)v(ra)] produces the 

minimum possible steady-state excess mse, that is, Jex(oo) = 0, so any differences 

that arise from minimizing the weight error power instead of the excess mse only 

affect the transient behavior of Jex(n). 

5If the reference input is a sequence of independent, identically-distributed random variables, as 
explicitly assumed by Duttweiler (1982), then R = cl, where c is an arbitrary constant. 
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Similar approaches designed to minimize the mean-squared weight error or mean- 

squared output error have been proposed for other applications of the LMS algorithm 

(Duttweiler, 1982; Sondhi and Berkley, 1980; Mikhael, 1986; Yassa, 1987). These 

methods optimize the steady-state performance when the system is operating in a 

stationary environment, that is, when the optimal weights, w*, do not vary with time. 

They do not attempt to optimize performance in the presence of nonstationarities or 

during transients. Because the system is continuously adapting, this results in nearly 

optimal performance in slowly varying nonstationary environments, providing that 

the degree of nonstationarity is slow relative to the convergence time of the adaptive 

filter. 

Optimal step-size parameters based on error criteria that include performance 

during transients and in nonstationary environments are available in the literature 

for some cases. Examples of step-size parameters selected to optimize performance 

during transients are presented by Horowitz and Senne (1981), Feuer and Weinstein 

(1985), and Hsia (1983). Horowitz and Senne (1981) select the step-size parameter to 

provide "fastest initial convergence." Feuer and Weinstein (1985) derive a step-size 

parameter that minimizes the quantity 

C = E(J(n) - J(oo)). (4.33) 
n=0 

where small values of C correspond to rapid convergence. Hsia (1983) minimizes the 

convergence ratio, 
tr[vr(n + l)v(n + l)] 

tr[vT(n)v(n)]       ' K '    ) 

In nonstationary environments, an additional source of error arises from the weight 

vector lag, that is, the difference between the current weights, w(ra), and the optimal 

weights, w*(n), due to changes in the optimal weights. Optimized step-size param- 

eters for nonstationary environments are presented by Widrow et al. (1976), Hsia 

(1983), and Gardner (1987). These methods minimize the total weight vector error 

due to both weight vector lag and misadjustment from the noisy gradient estimate. 

Finally, Fisher and Bershad (1983) and Bershad (1987) advocate selecting the 

45 



step-size parameter to provide "the smallest misadjustment error at the end of the 

observation interval," that is, number of iterations. They determine the optimal 

value of the step-size parameter empirically by plotting misadjustment as a func- 

tion of step-size parameter for a variety of observation intervals, filter lengths, signal 

powers, and values of minimum mse. The approach taken in the current work can 

be considered an analytical means of satisfying Bershad's (1987) criterion, providing 

that the 'observation interval' is sufficiently long that the system has converged. 

Optimization based on weight error power 

Derivation of the optimal step-size parameter based on minimizing the trace of the 

weight error correlation matrix, tr[K(n)], at each iteration, first requires an expression 

for the time evolution of K(n). The derivation of this expression is omitted here, but 

can be found in Haykin (1986, pp. 221-225). The general idea is to use (4.1), (4.17), 

and (4.24) to determine the time evolution of the weight error vector, v(n), and 

then take the outer product of both sides of the equation according to (4.26). With 

no target signal present, the resulting time evolution of the weight-error correlation 

matrix is 

K(n + 1) = K(n) - fi[RK{n) + K(n)R] + ^2Rtr[RK(n)] + fi2 JminR        (4.35) 

(Haykin, 1986, 5.74). Including the target signal and following the steps used to 

derive (4.35) yields 

K(n + 1) = K(n) - fi[KK(n) + K(n)R] + /x2Rtr[RK(n)] + fi2( J^ + <r?)R. (4.36) 

Again, as discussed following (4.30), the effect of the target signal is the same as the 

effect of the minimum error. 

Given the state of the system at time n, minimization of the expected value of 

the total weight error power at time (n + 1), E[vT(n + l)v(n + 1)] or equivalently 
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tr[K(rc + 1)], begins by taking the trace of (4.36), yielding 

tr[K(n + 1)] = tr[K(n)] - 2/ttr[RK(n)] + /x2trR(tr[RK(7i)] + J^ + <r2t)     (4.37) 

where the properties tr[A + B] = tr[A] + tr[B] and tr[AB] = tr[BA] have been used. 

The value of fi that minimizes the total power in the weight error at each iteration, 

denoted n*(n), is found by taking the first derivative of (4.37) with respect to fi, 

setting it equal to zero, and solving for fi, resulting in 

„•r»> - tr[RK(n)] 
11 {n) ~ (trR)(tr[RK(n)] + J^ + of) ^M) 

It can be verified that this is in fact a minimum, because the second derivative is 

positive. 

Substituting (4.10), (4.27), and (4.28) into (4.38) yields 

M KU)     L<xl{*l + J^ + J«(n))      2*2W(n)]" l       } 

Finally, the constant a is introduced in (4.39) to facilitate comparison with other 

algorithms, producing 

u*(n) = aJ«(w) =     aJ»(TO) u 40) 

This constant affects the convergence of the adaptive algorithm with optimized step- 

size parameter, but does not affect the steady-state performance, as will be shown 

below. Substituting (4.19) into (4.40) reveals that 

Jcx{n) represents output signal power that potentially could be cancelled, but remains 

because the weights are at suboptimal values. Therefore, (4.41) can be interpreted 

as stating that the optimal step-size parameter at each iteration equals the traditional 

step-size parameter adjusted by the ratio of cancellable output signal power to total 
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output signal power. 

For the optimal method of calculating the step-size parameter, substituting (4.40) 

for n = oo into (4.30) and rearranging terms yields 

(2 - a)Jex(oo)(Jex(oo) + Jain + <r2t) = 0. (4.42) 

The nonnegative solution of (4.42) is 

Jex(oo) = 0. (4.43) 

This result proves that, in the steady state, the method of calculating the step-size 

parameter described by (4.40) truly is optimal. 

4.3.2     Modifications to the optimal step-size parameter 

The expression for the optimal step-size parameter given by (4.40) cannot be im- 

plemented in a real system, since it requires exact knowledge either of J^Jji) or 

equivalently of the autocorrelation matrix, R, and the current weight error correla- 

tion matrix K(ra). None of these quantities is known. R is implicitly estimated by 

the LMS algorithm, and K(ra) can be computed from the current weights only if the 

optimal weights, w*, are known. Obviously, if the optimal weights were known, there 

would be no need for any adaptive algorithm. The dependence on these quantities 

is not surprising, however, since Jcx(n) and K(n) both measure the deviation of the 

current weights from the optimal weights, and intuitively, the "best" size step to take 

at any point depends on the magnitude of that deviation. 

In order to determine an expression for the step-size parameter that can be im- 

plemented in a real system, additional assumptions are required. The first approach 

approximates the optimal method derived in the previous section by using (4.40) with 

an estimate for the excess mse, that is, 

** W " Lo*(oi + J^ + J«(n))      L*lE[y*(n)}' K '    } 
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The estimate of the excess mse is based on powers of signals available to the adaptive 

processor, specifically, 

£(n) = E[y\n)] + o> - o^, (4.45) 

where o-pri is the power of the primary input signal. Implementing this method in 

a real system requires estimating the power of three signals, the primary input, the 

reference input, and the system output, to produce the time-varying estimates 0^(71), 

o£(n), and o^(ra). The estimate of the primary input power can be considered the 

sum of time-varying estimates of of and <rj, while the estimate of the system output 

power can be considered the sum of a time-varying estimate of o\, and two terms due 

to the jammer, J^m and Jex(7i). Mathematically, 

4M = «£,(») + oj» (4-46) 

and 

o>) = of» + J^ + J«(n), (4.47) 

where of (ra) is the estimate of target power derived from the system output, o£p(ra) 

is the estimate of target power derived from the primary input, and <Tj,P{n) is the 

estimate of jammer power derived from the primary input. Substituting the estimates 

given by (4.46) and (4.47) into (4.45) and rearranging yields 

Mn) = Jex(n) + Jaäa + *Z(n) - o|>p(n) + ot
2_y(n) - ofp(n). (4.48) 

This shows that Jex(n) is a good estimate of Jex(n) when the minimum mse, Jmin, is 

small and the power estimates are accurate, that is, <rl(n) ~ cr)lP(
71) and °f,y(TO) ~ 

<r^p(n). In a real system, the value of Jex(n) may be negative due to fluctuations in 

the power estimates. When this occurs, Jex(n) can be replaced with zero for that 

iteration. 

To determine the steady-state excess mse associated with this approximation-to- 

optimal method, it is necessary to make some assumptions about the estimation error. 
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The estimation error, A, is defined by 

A = T*{n) - Jcx(n) (4.49) 

and is related to the output error power associated with the weight error vector 

implicitly defined by Jex(7i). In order to simplify the following analysis, it is assumed 

that A is a positive constant. Substituting (4.44) and (4.49) at n = oo into (4.30) 

and rearranging yields 

((2 - a) Jex(oo) - aA)( Jex(oo) + Jmm + *?) = 0, (4.50) 

with the positive solution 

Jex(oo) = -5*-. (4.51) 
z — a 

If Jex(n) is exactly equal to Jex(n), then this method is equivalent to the optimal 

method, the estimation error, A, is zero, and the steady state performance is optimal, 

that is, Jex(oo) = 0. From (4.48), this only occurs if J^ = 0, 0-2(71) = a^Jji), and 

tfyi71) = a\p{n)- Any error in the estimate of Jex(n) will cause the steady state excess 

mse to be nonzero and proportional to the estimate error, A. Defining constants cx 

and Ct to indicate the fractional error in the estimates, 

"^ ~ ^ (4.52) 

«W-oW (453) 

and using (4.48) and (4.49), it can be seen that the estimation error, A, is composed 

of three quantities, proportional to the powers Jmin, &1, and of, 

A = JTain + cxa\ + eta?. (4.54) 

Substituting this expression for A into (4.51) shows that the approximation-to-optimal 

method described by (4.44) and (4.45) results in a steady state excess mse that in- 
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creases with target signal power. 

A second candidate for adjusting the step-size parameter can be obtained by 

making assumptions about the weight error correlation matrix. If the individual 

weight errors are independent, identically-distributed random variables with variance 

c,6 then K(n) = cl. Using this assumption and (4.10) in (4.27) gives 

Jex(n) = tr[RK(n)] = ctr[R] = cL*2
x, (4.55) 

and (4.40) becomes 

(XC OLC 

^ = oi + J^+J„(n) = W(n)X (4-56) 

Since c and a are both constants and the value of c is arbitrary, it can be eliminated 

without loss of generality. Furthermore, to simplify comparisons with other methods, 

it will be useful to include a factor of ^, yielding 

/Z°Ut(n) = L(a? + J^ + Jex(n)) = LE[y\n)Y ^^ 

the output method for calculating the step-size parameter. Note that the quantity 

E[y2(n)] can be estimated from the output of the system and that no assumptions 

have been made about the autocorrelation matrix, R. 

Even if individual weight errors are independent, identically-distributed random 

variables as assumed above, their variance will not remain constant as the LMS 

algorithm converges in response to new inputs. As a result, the output method 

produces a steady-state excess mse that is nonzero, but independent of the target 

power. This can be seen by substituting (4.57) for n = oo into (4.30) and rearranging 

terms, yielding 

(2Jex(oo) - a*l)( Jcx(oo) + J^ + cr2) = 0. (4.58) 

6The entries of the weight error correlation matrix, K(n), are dimensionless, because the weights 
themselves are dimensionless. 
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The positive solution to (4.58) is 

Jex(oo) = ^S (4.59) 
OLCTI 

which is independent of the target power. 

The final method proposed for calculating the step-size parameter is obtained by 

combining the advantages of the traditional and output methods. Recall that for 

the traditional method, the step-size parameter is normalized by the reference input 

power, <r2, producing a steady-state excess mse that is proportional to the target signal 

power. For the output method, the step-size parameter is normalized by the system 

output power, E[y2(n)], producing a steady-state excess mse that is independent of 

the target signal power. Therefore, the advantage of the traditional method is that 

the steady-state excess mse is very small in the presence of weak target signals, while 

the advantage of the output method is that the steady-state excess mse is constant 

in the presence of strong target signals. Both of these advantages can be obtained by 

normalizing by the sum of the reference input and system output powers, according 

to 
OL (X 

Aisum(n) = L{o* + of + J^ + J«(n)) = L{o* + E\?{n)]y (4-60) 

This method of calculating the step-size parameter was used by Greenberg and Zurek 

(1992). 

The steady-state performance of the sum method can be determined by substi- 

tuting (4.60) for n = oo into (4.30) and rearranging, which yields 

2(Jex(oo))2 + [2( J^ + <r2) + (2 - ayx]Jex(oo) - aaKJ^ + a?) = 0.        (4.61) 

The positive solution of (4.61) is 

T   ,    N      J[(2 - a)<r* + 2(JmiB + <rt
2)]2 + Sacr^J^ + a?) - (2 - afö - 2(7^ + <rt

2) 
Jex(oo) = -* . 

(4.62) 
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2 
Hm(Jmin+<r?)-0 
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Hm(JIain+^)-00 
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Table 4.1: Summary of results for five methods of adjusting the step-size parameter 
described in the text. 

It can be shown that 

and 

lim       Jex(oo) = 0 
(Jmm+o-?)->0 

et<TZ 
lim        Jex(oo) = 

(Jmin+<>t)-»00 Z 

(4.63) 

(4.64) 

confirming that the sum method has the advantages of both the traditional and output 

methods at the two extremes of target signal power. 

The five methods of calculating the step-size parameter presented above are sum- 

marized in Table 4.1. For each of these methods, it is necessary to consider the limits 

on a required for the adaptive algorithm to converge.   From Widrow and Stearns 

(1985), the algorithm converges for 0 < fi < and a conservative upper bound 

can be found by replacing the maximum eigenvalue, Amax, with the sum of all eigen- 

values, X)i=i ^i> which, from (4.10), equals L<r\. Using this conservative upper bound, 

the condition required for convergence is 0 < \L < -^.   Equations (4.19), (4.40), 
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(4.44), (4.57), and (4.60) were each substituted for fi in this inequality, and the re- 

sulting limits on the dimensionless step-size parameter, a, are included in Table 4.1. 

The limit given for the sum method represents an extremely conservative upper bound 

based on the assumption that E[y2(n)] = 0. The limit given for the output method 

reveals a potential problem, since the upper bound on a will be very small when the 

algorithm has converged and the target signal is weak. In a practical system this 

could be overcome by selecting a assuming a minimum power level for E[y2(n)] and 

then substituting the minimum value into (4.57) whenever that minimum exceeds the 

current estimate of E[y2(n)]. 

4.3.3    Comparison of methods for calculating the step-size 

parameter. 

The five methods described above for calculating the step-size parameter (traditional, 

optimal, approximation-to-optimal, output, and sum) are compared on the basis of 

steady-state performance and transient behavior. 

Steady-state performance 

The measure of steady-state performance is the steady-state excess mse, Jex(oo), 

which reflects the error due to the ongoing adaptive process, that is, the fluctuation 

of the weights about their optimal values after they have converged in the mean. The 

steady state excess mse was calculated for each of the five methods in the previous 

sections, and the results are included in Table 4.1. 

Figure 4.1 shows the steady-state performance for all but the optimal method 

in terms of the jammer gain due to the system (-^i   ) as a function of the input 
2 

TJR (^j). This is similar to the normalized residual noise used by Lu and Clarkson 

(1993). Values of jammer gain less than unity (0 dB) indicate beneficial performance 

due to the adaptive noise canceller, while values of the jammer gain that exceed unity 

indicate that the output of the system is degraded relative to the input. The excess 

mse for the different methods was calculated according to (4.31), (4.43), (4.51), (4.59), 
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Figure 4-1: Steady-state performance for four methods of computing the step-size pa- 
rameter. The plot shows the jammer gain due to the system as a function of the input 
TJR. The four methods are the traditional method, the approximation-to-optimal 
method, the output method, and the sum method, labeled trad, approx, output, and 
sum, respectively. The curves are based on (4.31), (4.51), (4.59) (4.62) from the text. 

and (4.62), for a = 0.2, L = 10, and JmiT1 = 0. Figure 4.2 shows the steady-state 

performance for all five methods with the same parameter values as Fig. 4.1, except 

that -£§»■ = 0.33. For both figures, the estimation error, A, in (4.51) was computed 
i 

according to (4.54), with cx = cy = 0.05, corresponding to 5 percent error in the 

power estimates. Results for the optimal method are not shown in Fig 4.1, since, 

with Jmin = 0, the jammer gain is zero (—oo dB). 

For the optimal method of calculating the step-size parameter, the steady-state 

excess mse is zero. This verifies that, at least in the steady-state, the method derived 
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Figure 4-2: Steady-state performance for five methods of computing the step-size 
parameter. The plot shows the jammer gain due to the system as a function of the 
input TJR. The five methods are the traditional method, the optimal method, the 
approximation-to-optimal method, the output method, and the sum method, labeled 
trad, opt, approx, output, and sum, respectively. The curves are based on (4.31), 
(4.43), (4.51), (4.59) (4.62) from the text. 
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in Section 4.3.1 truly is optimal. However, the optimal method requires knowledge 

of quantities that are not available to a real system. Because of the assumptions 

made to derive the approximation-to-optimal, output, and sum methods, the resulting 

steady-state performance is suboptimal, with nonzero values of steady-state excess 

mse. However, from Figs. 4.1 and 4.2, it is clear that all three of these methods 

are preferable to the traditional method in the presence of appreciable target signal 

power. The performance of the sum method is particularly attractive, since excess 

jammer power both approaches zero for weak target signals and remains limited for 

strong target signals. 

Transient behavior 

In this section, expressions are derived to characterize the transient behavior of the 

LMS algorithm with the five different methods of calculating the step-size parame- 

ter. First, iterative expressions are determined for the method of steepest descent, 

whose transient behavior is considerably easier to analyze than that of the LMS algo- 

rithm. Then, those results are related to the transient behavior of the LMS algorithm. 

Finally, additional assumptions are used to determine the time constants of simple 

exponential decays that approximate the transient behavior of the sum method of 

calculating the step-size parameter. 

Expressions for the transient behavior of the LMS algorithm with a constant 

(traditional) step-size parameter are available in the literature (e.g. Haykin, 1986, 

Eq. 5.111), but these expressions are quite complicated and do not lend themselves to 

intuitive interpretations of convergence time. However, under independence theory, 

the ensemble average of the weights (for identical initial conditions and different input 

sequences) is equivalent to the weights obtained by the method of steepest descent, 

which uses the exact gradient at each iteration. Therefore, the expressions derived 

here are based on the method of steepest descent, and they characterize the mean 

transient behavior of the weights (Alexander, 1986) and provide a lower bound on 

the transient behavior of the excess mse (Widrow and Stearns, 1985). 

The transient properties of the steepest descent algorithm are analyzed by con- 
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sidering the decay of different modes associated with the different eigenvalues and 

eigenvectors of R as in Widrow and Stearns (1985) and Haykin (1986). The autocor- 

relation matrix is decomposed to 

R = QAQr (4.651 

where the columns of Q are the normalized eigenvectors of R, and A is a diagonal 

matrix with diagonal elements equal to \{, the eigenvalues of R. Q is orthonormal, 

and its geometrical interpretation is a rotation that aligns the coordinate space with 

the principle axes of the hyperparaboloid representing the error surface. This rotation 

can be applied to the weight error vector to produce a rotated weight error vector, 

„(n) = Qrv(7i), (4.66) 

with the behavior of the individual modes decoupled. This permits the description 

of the excess mse as 

Jex(n) = EMl-A)2nk(0)|2 (4-67) 
i=l 

(Haykin, 1986, Eq. 5.28) where i/;(0) is the ith element of the initial rotated error 

vector, ^(0). Because the method of steepest descent uses the exact gradient, the 

performance is characterized by the weight error vector, v(ra), and the rotated vector 

u(n). It is not necessary to take the expected value, as it was in the analysis of the 

LMS algorithm. 

For the traditional method of calculating the step-size parameter, (4.67) represents 

a sum of exponential decays. Each mode is associated with its own time constant, 

T = Zl  (4.68) 

(Haykin, 1986, Eq. 5.30), which is approximated as 

1 

2fi\i 
(4.69) 

58 



for fiXi < 1 (Haykin, 1986, Eq. 5.31). Substituting (4.19) into (4.69) yields 

for aXi «C l>cr\. Haykin (1986, p. 236) points out that although small eigenvalues of 

R lead to slowly converging terms in the transient component of Jex(ra), these small 

eigenvalues also correspond to modes that make a relatively small contribution to 

Jex(n). 

The transient behavior of the proposed methods for calculating the step-size pa- 

rameter can be characterized using the above approach. However, since fi in (4.67) is 

replaced by the time-varying fi(n), the resulting decay is not necessarily exponential. 

Further, fi in (4.67) may depend on Jex(n), so that the form of the decay may change 

as the power of the excess mse changes with respect to other power levels. Therefore, 

it will be useful to consider the change in Jcx{n) at each iteration. This requires 

defining the components of Jcx(n) attributable to the individual modes, JeXti(n), so 

that 

J«(n) = £jex,i(»)- (4-71) 
i=i 

With this definition and (4.67) 

Jex(n + 1) = E Jex,i(n + 1) = £(1 - Mn)^)2 Jex>i(n). (4.72) 
Z=l 2=1 

Substituting the appropriate expressions for fi[n) into (4.72), it is possible to 

obtain a recursive formula for the excess mse associated with each of the proposed 

methods of calculating the step-size parameter. For example, for the sum method, 

substituting (4.60) into (4.72) gives 

L L   ( «A- \2 

Similarly, substituting (4.40), (4.44), and (4.57) into (4.72) produces iterative for- 

mulas for the excess mse associated with the optimal, approximation-to-optimal, and 
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output methods, respectively. Iterating these recursive formulas for known parameter 

values produces a smooth decay curve that corresponds to the transient behavior of 

the steepest descent algorithm. The relation to the transient behavior of the LMS 

algorithm is discussed below. 

Figure 4.3 shows the transient behavior predicted by (4.72) for the five methods of 

calculating the step-size parameter. The three parts of the figure show the transient 

behavior for input TJRs of —10, 0, and +10 dB. The parameter values used to 

generate these curves were a = 0.2, L = 10, J^w, = 0, <r| = <rj, Jex(0) = <x|, and 

Aj = <rl for all i. 

The curves shown in Fig. 4.3 describe the transient behavior of the steepest descent 

algorithm and can be interpreted to provide some understanding of the transient 

behavior of the LMS algorithm. The transient performance of the steepest descent 

algorithm corresponds to the mean transient behavior of the weights and a lower 

bound on the transient behavior of the excess mse for the LMS algorithm. Although 

the curves in Fig. 4.3 all converge to zero (in general, to ^L), the steady-state 

performance of the LMS algorithm is nonzero for all but the optimal method, as seen 

in Fig. 4.1. The implication of Fig. 4.3 for the performance of the LMS algorithm 

is not the value to which the curves converge, but in the rate of convergence, since 

the transient performance of the steepest descent algorithm is the same as the mean 

behavior of the LMS weights. For example, for the traditional method with input 

TJR = —10 dB, the jammer gain starts at unity and converges to a steady-state 

value near 0.01 (—20 dB). The ensemble average of performance curves for different 

input samples with the same parameter values will exhibit transient behavior with the 

shape of the traditional method curve in the top panel of Fig. 4.3, but will converge 

to the steady-state value of 0.01. 

With this understanding, it is possible to make several observations by compar- 

ing Figs. 4.1 and 4.3. First, in general, the conditions producing poorer steady-state 

performance (the output method at low TJR and the traditional method at high 

TJR) converge faster that those that produce more favorable steady-state perfor- 

mance.   This is a direct result of the fundamental tradeoff inherent in selection of 
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Figure 4-3: Transient behavior for five methods of computing the step-size parameter. 
The curves are based on substituting the appropriate expression for computing the 
step-size parameter into (4.72). The three panels show the behavior for input TJRs 
of -10, 0, and 10 dB. 
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the dimensionless step-size parameter, a. Second, despite the sometimes rapid initial 

convergence of the optimal method, it always exhibits the slowest convergence overall. 

This is because of the presence of the excess mse in the numerator of the optimal step- 

size parameter given by (4.40). As the excess mse converges, the step-size parameter 

is gradually reduced, and the convergence slows as it progresses. Finally, for a prac- 

tical system, at high TJR the transient behavior is similar for the sum, output, and 

approximation-to-optimal methods. At low TJR, the sum method converges slightly 

slower than the traditional and approximation-to-optimal methods, but that disad- 

vantage is insignificant compared to the improved steady-state performance obtained 

with the sum method. 

Although the curves in Fig. 4.3 were computed for the case of equal eigenvalues, 

similar results are obtained when the eigenvalues are not equal. Unequal eigenvalues 

cause the different modes to converge at different rates, and the overall convergence 

is the sum of the modes. For a single eigenvalue, the transient behavior of the corre- 

sponding mode is of the form of Fig. 4.3 to within a scaling of the abscissa. Therefore, 

the transient behavior of the total excess mse corresponds to the sum of such scaled 

curves, and the relative performance for the different methods will follow the trends 

shown in Fig. 4.3. 

Estimates of the convergence time based on an exponential decay can be obtained 

for particular situations by making additional assumptions. This will be demon- 

strated in the following derivation for the sum method, the practical method with 

the most promising steady-state performance. Similar derivations can be performed 

to gain insight into the transient performance of the other methods under particular 

conditions. 

The relation described by (4.73) does not represent a sum of simple exponential 

decays, due to the presence of the quantity Jex(n) in the denominator. If the excess 

mse is small relative to the power of the other signals in the normalization (Jex(n) <C 

°i + °f + Jmin), then the effect of Jex(n) in the denominator of (4.73) is negligible 
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and the decay associated with each mode will be exponential with time constant 

2a\i 
(4.74) 

for aX{ <C L(<rl + <j\ + Jmin)- On the other hand, if the excess mse is large relative to 

the uncancellable signal powers (Jex(n) > of + Jmm),7 then (4.73) becomes 

Mn + 1) = E -W» + 1) « E (l - ^^.J'-^W. («-7») 

and the effect of Jcx(n) in the denominator cannot be ignored. At the beginning of the 

adaptive process, the initial excess mse can be approximated by the primary jammer 

power, which is roughly equal to the power of the reference input (Jex(0) ~ <rj w o^). 

Substituting a\ for Jcx(n) in the last term of (4.75) reveals that the excess mse 

associated with each mode initially decays with a time constant given by 

n « ^ (4.76) 

for a\i <C 2icr^. As the excess mse decays from its initial value, Jex(n) becomes 

smaller than <rl, the second term in the denominator of (4.73) decreases, and the 

excess mse decays more rapidly than indicated by (4.76). Therefore (4.76) provides 

a conservative estimate of the time constant. 

Figure 4.4 shows the transient performance for the sum method, computed from 

the recursive formula given in (4.73), together with decaying exponentials with time 

constants given by (4.74) and (4.76). The parameter values are the same as those used 

to generate Fig. 4.3. As expected, when the TJR is high (bottom panel of Fig. 4.4), 

the transient predicted by the recursive formula closely matches the exponential with 

decay given by (4.74). When the TJR is low (top panel of Fig. 4.4), the transient 

predicted by the recursive formula initially tracks the exponential with decay given 

7It is not reasonable to assume that the excess mse is very much greater than the reference 
input power (Jex(^) ^> <^x)- ■"•*■ ^s assumed that the reference input power (cr^) is comparable to the 
primary jammer input power (cr?), therefore this situation could only occur if the system provided 
considerable amplification of the jammer signal. 
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by (4.76). As the system converges, the transient predicted by the recursive formula 

converges faster than the exponential, as expected. Eventually, the excess mse con- 

verges to a level sufficiently low that the assumptions used to derive (4.76) are invalid, 

and at some point the assumptions used to derive (4.74) become valid. For this case 

of equal eigenvalues used to generate Fig. 4.4, the time constants given by (4.74) and 

(4.76) are equivalent when the reference signal power equals the sum of the target 

signal and the excess mse (o^ = of + Jmm)- For the parameter values used here, this 

occurs at TJR = 0 dB (middle panel of Fig. 4.4). In that case, the two exponential 

curves coincide, and the performance predicted by (4.73) does not differ substantially. 

4.4     Simulations 

To verify the results derived in the previous section, an adaptive noise canceller was 

implemented in computer simulations with five methods of adjusting the step-size 

parameter. The five methods were based on the traditional (/Jtrad), optimal (fi*), 

approximation-to-optimal (/2*), output (float), and sum (/iSum) methods described by 

equations (4.19), (4.40), (4.44), (4.57), and (4.60), respectively. Implementation of 

the optimal method requires knowledge of the optimal values for the adaptive weights, 

w*, which is possible in a computer simulation but not in a real system. The results 

for the optimal method are presented as a benchmark of the performance and to 

confirm the analysis of the previous section. The other four methods rely only on 

quantities available to the adaptive processor and therefore can be implemented in a 

practical system. 

The target and jammer signals were generated from two mutually independent, 

normally distributed noise sources, t(n) and z(n), with zero mean and unit variance. 

The primary and reference jammer signals, j[n] and x[n], were generated from z(n) 

for two different cases. In Case 1, the jammer signal in the primary input was a 

delayed version of the jammer signal in the reference input, that is ,7(71) = z(n — 

2) and x(n) = z(n). In Case 2, the jammer signals in the primary and reference 

inputs were generated from the sum and difference of a delayed signal according to 
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Figure 4-4: Transient behavior for the sum method of computing the step-size pa- 
rameter. The solid curve is the true transient performance according to (4.73) and 
the dashed and dotted curves are exponential decays that approximate the transient 
behavior with time constants given by (4.74) and (4.76). The three panels show the 
behavior for input TJRs of —10, 0, and 10 dB. 
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j[n] = \{z[n — 2] + z[n}) and x[n] = \{z[n — 2] — ^[n]).8 The length of the adaptive 

filter was L = 10 and the normalized step-size parameter was a = 0.2. With these 

parameter values, in Case 1, the minimum mse is Jm;„ = 0, and the eigenvalues of 

the autocorrelation matrix, R, are X{ = <r2 for all i. In Case 2, the minimum mse is 

Jmm = 0.33er2., and the minimum and maximum eigenvalues are Amin = 0.13cr2 and 

Amax = 1.9o^. For both Cases 1 and 2, the target signal was scaled to produce values 

of input TJR from —20 dB to +20 dB in increments of 10 dB. For each trial, the 

adaptive weights were initialized to the zero vector. 

The required signal powers were calculated as follows. For the optimal method, 

the excess mse, Jex(n), was replaced by its instantaneous value, [vT(ra)x(rc)]2 in (4.40), 

and E[y2(n)] was computed according to (4.28), by summing the known values of a\ 

and <r2 with the instantaneous value [vr(n)x(ra)]2 instead of Jex(n). For the other 

methods, the signal powers er2, cr2ri, and E[y2(n)] were estimated by squaring and 

then filtering the reference input, primary input, and system output with a first- 

order recursive lowpass filter. For the approximation-to-optimal method, the time 

constant of the lowpass filter was 100 samples. For the sum and output methods, the 

time constant was equal to the filter length, L = 10. 

Figures 4.5 and 4.6 show the simulation results (represented by discrete points) in 

terms of jammer gain as a function of input TJR, for Cases 1 and 2, respectively. The 

results were obtained by processing 300,000-sample source signals9 and using the last 

10,000 samples of the output to compute the steady-state error, J(oo), for each trial. 

For each condition, ten trials were performed with different samples of the target and 

jammer source signals, and the resulting steady-state error values were averaged over 

the ensemble of ten trials. 

The smooth curves in Figs. 4.5 and 4.6 indicate the steady-state performance 

predicted by (4.31), (4.43), (4.51), (4.59), and (4.62), and are identical to the curves 

8This relation between the primary and reference signals occurs when a simple two-microphone 
generalized sidelobe canceller is used to cancel a directional jammer signal that has a delay of two 
sampling periods between microphones. 

9This length was selected to allow the optimal method to approach steady-state for the condition 
with the longest convergence time (Case 2 with input TJR = 20 dB). 

66 



Steady-state performance - Case 1 

15- 

10 

5 

Oh 
m 
2, 
E   -5 
CO 
O) 

|-10 
E 

.23, 
-15 

-20 

-25 

-30 

o 

approx 

_i  

-20 -15 -10 -5 0 5 
input TJR (dB) 

10 15 20 

Figure 4-5: Steady state performance for four methods of computing the step-size pa- 
rameter for Case 1. The plot shows the jammer gain due to the system as a function 
of the input TJR. The four methods are the traditional method, the approxima- 
tion-to-optimal method, the output method, and the sum method. The simulation 
results are represented by discrete points, while the solid curves correspond to the 
analytical results shown in Fig. 4.1. 
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Steady-state performance - Case 2 

15 

10 

CO 

c 
'm o> 
(D 
E 
E    0 

-10 

trad/' 

+ ouipui    + 

sum 

-20 -15 -10 -5 0 5 
input TJR (dB) 

10 15 20 

Figure 4-6: Steady state performance for five methods of computing the step-size 
parameter for Case 2. The plot shows the jammer gain due to the system as a 
function of the input TJR. The five methods are the traditional method, the optimal 
method, the approximation-to-optimal method, the output method, and the sum 
method. The simulation results are represented by discrete points, while the solid 
curves correspond to the analytical results shown in Fig. 4.2. 
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shown in Figs. 4.1 and 4.2. Again, values of cx = Q = 0.05 were used to calculate 

the estimation error, A, according to (4.54) for use in (4.51). Clearly, in steady state 

there is very good agreement between the simulations and the analytical results. 

Simulations of the optimal method for the parameter values used in Fig. 4.5 (not 

shown) confirmed that the steady-state performance converges to zero (—oo dB). 

Figure 4.7 shows the transient behavior of the sum method for Case 1. The 

solid Hnes are the ensemble average of 50 simulation trials, and the dashed lines are 

exponential decays with time constants predicted by the analysis of Sec. 4.3.3. The 

dashed lines were generated assuming that the mse decays exponentially to the value 

of J(oo) predicted by (4.62), according to 

J{n) = J(oo) + [J(0) - J(oo)]e-4/T (4.77) 

This is in contrast to the transient behavior of the steepest descent algorithm shown 

in Figs. 4.3 and 4.4, where the mse decays to zero. For an input TJR of —10 dB (top 

panel of Fig. 4.7) the time constant is r = 50 samples, computed according to (4.76), 

and for an input TJR of 10 dB (bottom panel of Fig. 4.7) the time constant is r = 275 

samples, computed according to (4.74). As expected, at low TJR, the exponential 

decay predicted by (4.76) gives a conservative estimate of the time constant; the 

actual convergence is slightly faster. At high TJR, the exponential decay predicted 

by (4.74) closely matches the simulation results. Overall, there is good agreement 

between the simulations and the analytical results. 

4.5     Discussion 

4.5.1     Summary of results 

The preceding analysis determined an expression for the optimal time-varying step- 

size parameter for an adaptive noise canceller using the LMS algorithm to adjust the 

adaptive weights. The optimality criterion used was minimization of the total weight 

error power. When the algorithm reaches steady-state, this criterion is equivalent to 
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Figure 4-7: Transient behavior for the sum method of computing the step-size param- 
eter for Case 1. The solid curve is the ensemble average from computer simulations, 
and the curve composed of circles is an exponential decay described by (4.77). The 
two panels show the behavior for input TJRs of —10 and 10 dB. 
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minimization of the excess mse due to the adaptive process. The resulting optimal 

method requires knowledge of quantities unavailable to the adaptive system. For 

implementation in a practical system, additional assumptions lead to three practical 

methods (approximation-to-optimal, output, and sum) for calculating the step-size 

parameter. 

In terms of steady-state performance, the sum method is clearly preferable to the 

traditional, approximation-to-optimal, and output methods. The performance of the 

traditional method suffers in the presence of strong target signals because the excess 

mse is proportional to target power. The approximation-to-optimal method performs 

poorly at the extremes of target power due to its sensitivity to errors in the signal 

power estimates. The output method has excess mse independent of target power, 

which is unnecessarily high when the target signal is weak. The sum method provides 

the advantages of the traditional method in the presence of weak targets (excess mse 

proportional to the sum of the target power and the minimum mse) and of the output 

method in the presence of strong targets (constant excess mse). 

Analysis of all five methods produced recursive formulas to characterize the tran- 

sient behavior for known parameter values. It was shown that although methods 

that produce poor steady-state performance at the extremes of TJR converge more 

quickly, under conditions leading to good steady-state performance, the practical 

methods all exhibit similar transient behavior. Furthermore, a set of exponential de- 

cays were derived that can be applied to approximate the transient behavior of the 

sum method. 

The surprisingly poor steady-state performance of the approximation-to-optimal 

method deserves some discussion. The problem with implementing the approximation- 

to-optimal method lies in the difficulty in obtaining good power estimates. The other 

methods are not as sensitive to errors in the power estimates because the estimates 

are only used to normalize the step-size parameter with respect to power levels. In 

the approximation-to-optimal method, the power estimates are subtracted with the 

goal of cancelling the target and input jammer powers and obtaining the excess error 

power. However, in most cases the powers to be cancelled by the subtraction are much 
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larger than the desired excess error power, and as a result, relatively large errors in 

the estimate of excess error power are likely. For the simulation results presented in 

Figs. 4.5 and 4.6, the time constant of the filter used to produce the power estimates 

was 100 samples. Additional simulations showed that using longer time constants 

did provide some improvement, but the performance was still proportional to target 

power. 

In addition, the agreement between simulation and analytical results for the 

approximation-to-optimal method was not as good as for the other methods. That 

can be attributed to the restrictive assumptions about the form of the estimation er- 

ror, A, that were required to simplify the analysis. Even so, the results of the analysis 

based on A successfully predict the basic trends of the simulation results. 

4.5.2    Relation to other results 

Some of the expressions derived above can be related to previous work concerned 

with the performance of adaptive echo-cancellers for the telephone network (Dut- 

tweiler, 1982; Sondhi and Berkley, 1980; Wehrmann et al., 1980; Höge, 1975). AU 

of these works arrived at expressions for the optimal step-size parameter analogous 

to (4.39), and Wehrmann et al. (1980) and Höge (1975) considered ways of making 

approximations for practical implementation in a real system. 

Duttweiler was primarily concerned with the use of nonlinearities in the correlation 

multiplier, that is, replacing the product y(n)x(n) in (4.17) with the product of 

arbitrary functions of y(n) and x(n). A common variation on the LMS algorithm is 

to use the sign of y(n), x(n), or both, in order to eliminate the need for multiplication 

in (4.17). Duttweiler's analysis showed that nonlinearities always impair performance 

relative to use of the true correlation multiplier. 

To make the analysis tractable, Duttweiler made several assumptions similar to 

those of independence theory. Furthermore, Duttweiler assumed that the adaptive 

filter is long enough to completely model the echo path, so that Jm^ = 0, and that 

samples of the input signal, x(n), are independent, so that R = I. Under these as- 

sumptions, Duttweiler derived an expression for the evolution of the expected value of 
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the weight error power (equivalent to tr[K(n)]) for arbitrary nonlinearities. He eval- 

uated that expression for the true multiplier, y(n)x(n), and for several nonlinearities, 

and then determined the optimal step-size parameter for each of those cases. 

Three expressions from Duttweiler's analysis of the true correlation multiplier are 

directly related to expressions given in the current work. Making allowances for the 

different assumptions, Eqs. 48 and 50 from Duttweiler are closely related to (4.37) 

and (4.30), describing the evolution of the weight error power and the steady-state 

weight error power, respectively. In Eq. 85, Duttweiler gives the optimal step-size 

parameter for the true correlation multiplier, which, using the notation of the current 

work, is 

"•=■£& (478) 

where <rfex is the variance of uncancelled jammer signal, eex(n) = vr(n)x(n), and a^ 

is the variance of the system output. Since Jex(n) = E[e\Jji)), comparing (4.78) to 

(4.39) reveals that the two expressions are identical except for the use of variances 

in place of expected values based on ensemble averages. As is true of (4.39), (4.78) 

cannot be implemented in a real system, because a1! is unknown. Duttweiler points 

out that near-end speech detectors used on the telephone network can be seen as a 

crude approximation to (4.78). 

In a review paper on echo cancellation for the telephone network, Sondhi and 

Berkley (1980) describe a similar result. Again, using assumptions similar to inde- 

pendence theory, they derive Eq. 34 to describe the evolution of the weight error 

power that is equivalent to (4.37) presented in this work. In Eq. 35, they present an 

expression for the step-size parameter that minimizes the weight error power, which 

is presumably obtained by taking the first derivative of Eq. 34 with respect to the 

step-size parameter. Correcting what appears to be a typographical error (lack of 

squaring the term in the numerator) and using the notation of the current work, 

their Eq. 35 is 

Noting that £[(vT(n)x(n))2] = Jex(n) and that E[xT(n)x(n)] = Lai reveals that 
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(4.79) is equivalent to (4.39) except for the use of instantaneous values instead of 

expectations based on ensemble averages. With regard to (4.79), Sondhi and Berkley 

state that "this 'optimum5 value can be estimated by assuming the a;'s to be i.i.d., 

and making some further simplifying assumptions." However, they do not explain 

what the simplifying assumptions are or how an approximation to (4.79) could be 

implemented in a real system. 

The approach described by Sondhi and Berkley (1980) is based on work by Höge 

(1975). Using the notation of the current work, Höge (1975) reports that the optimal 

step-size parameter is given by 

,.(»)• = =5-— (4-80) 

where a = 1 and of (TO) and tr[K(n)] are recursive estimates of the target signal power 

and the weight error power, respectively. Rearranging (4.80) yields 

fay =     *%) (4.81) 
Lo*E\y\n)] 

where the estimates J«(n) = <r|tr[K(n)] and E[y\n)} = of (7i) + £xT(n)x(n)tr[K(n)] 

are based on (4.28) and the assumptions that Jm-m = 0 and R = of I. As a result 

of the latter assumption and (4.27), Jex(n) = of trK(n). Comparing (4.40) to (4.81) 

reveals that the two expressions are the same if the estimates are replaced by their 

exact values. Höge proposes estimating of and tr[K(n)] recursively from quantities 

available to the adaptive processor and from initial estimates of those values at n = 0. 

Wehrmann et al. (1980) report that the optimal time-varying step-size parameter, 

using the notation of the current work, is 

/*» =   „, ,   , , ,* ?-T- <4-82) 
xr (n)x(n) (l + E$fä) 
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If Jnün = 0, using (4.28) in (4.82) and rearranging shows that 

xT(n)x(n).%2(n)] 

which is the same as (4.39) with Lo~\ estimated by xr(ra)x(n) at each iteration. 

Wehrmann et al. (1980) note that the optimal method cannot be implemented in 

a real system because the signals e(n) and t(n) are not available for calculating their 

expected values required in (4.82). They then propose an implementable method for 

calculating the "noise insensitive compromise (nie) step-size factor," which is analyzed 

in the next section. 

4.5.3    Application to other proposed modifications of the 

LMS algorithm 

The LMS algorithm is widely used because of its effectiveness, simplicity, and relative 

ease of implementation. It is therefore not surprising that many researchers have 

suggested modifications to the LMS algorithm. These modifications are intended 

for a variety of purposes, including reducing computational burden (Claasen and 

Mecklenbrauker, 1981; Mathews and Cho, 1987; Sullivan, 1993) and improving the 

fundamental tradeoff between convergence time and steady-state performance (Harris, 

et al., 1986; Karni and Zeng, 1989; Yasukawa and Shimada, 1993; Makino et al., 1993). 

Some of these modified LMS algorithms are based on rigorous analysis, while others 

are ad hoc. Furthermore, some of these methods are only effective in applications of 

the LMS algorithm where the target signal is weak or nonexistent. 

The purpose of this section is to demonstrate how the methods of Sec. 4.3 can 

be applied to evaluate many of these proposed algorithms. Particular attention is 

given to the applicability of these modifications to configurations that require the 

algorithm to perform in the presence of strong target signals, such as the adaptive 

noise canceller. It should be noted, however, that not all modifications to the LMS 

algorithm can be evaluated using these methods. In order to analyze an algorithm 

using this framework, the modification must be expressable in terms of a time-varying 
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step-size parameter, fi(n), that is applied to the true correlation multiplier, y(n)~K(n), 

in (4.17). Analysis of arbitrary nonlinear correlation multipliers is considerably more 

complicated (e.g., Duttweiler, 1982; Sullivan, 1993). 

The following three examples illustrate how the analysis performed in Sec. 4.3 

can be used to evaluate the noise insensitive compromise (nie) algorithm (Wehrmann 

et al., 1980), the signed-error LMS algorithm (Claasen and Mecklenbrauker, 1981; 

Mathews and Cho, 1987) and the LMS algorithm with adaptive damped convergence 

factor (Kami and Zeng, 1989). 

Noise insensitive compromise (nie) algorithm 

Wehrmann et al. (1980) propose the noise insensitive step-size factor, given by 

**(») = *      v^ur77     t-x.. (4-84) ^max£i=l \X[n-l)\ 

where Xmax is the maximum peak voltage of telephone speech. They provide simula- 

tion results using a = 2 and show that it performs better than the traditional method 

when the target signal is present. Their simulation results are based on performance 

determined from a 200 ms segment taken after the system has adapted for 2 seconds, 

and they do not analyze the convergence time. 

As is typical of telephone echo cancellers, they assume that the system will include 

a speech detector to suspend adaptation when the target signal, t(n), consists of near 

end speech. As a result, when the system is adapting, the target signal consists only 

of line noise, and their simulations are restricted to values of TJR less than —20 dB. 

However, it is interesting to consider the performance of this method at high TJR as 

well. 

The steady-state performance of the nie method can be determined by substituting 

(4.84) for fi in (4.30): 

Jcx(oo) = aLfx (Jmin + g?) • (4-85) 
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If the values of x(n) are zero-mean Gaussian random variables, then ^[|s(w)|] = <rxJ- 

(Mathews and Cho, 1987). Using the Gaussian assumption, replacing \x(n — i)\ in 

(4.85) with its expected value and defining B = -£*— gives 

Comparing this expression to (4.31) shows that the steady state performance of the nie 

method is similar to the performance of the traditional method with the dimensionless 

step-size parameter, a, reduced by a factor, B, based on the ratio of actual reference 

input rms level to the maximum possible peak input. 

For the nie method, the performance depends on both the TJR and the signal 

levels relative to Xmax. For example, the nie method will provide better performance 

when (T\ = of = ^^ (B = |) than when <T\. = of = ^"-, (B = |) even though 

TJR = 0 dB for both cases. This is in contrast to the performance of the methods 

proposed in Sec. 4.3, which only depend on the input TJR. For the nie method, the 

worst case steady state performance occurs when the ratio, B, is largest, that is, when 

the input levels approach Xmax. Since the primary input must be less than Xjaa7. and 

it is assumed that of = cr?, the worst case occurs when of + of = X^ax. 

The worst case performance can be examined at the two extremes of TJR. At low 

TJR (0-2 > of), B « 1 and (4.86) becomes 

Jex(co) « a(J^ + <r'2), (4.87) 

which is similar to the performance of the traditional algorithm described by (4.31). 

At high TJR (o-* < of), B « z* ^d (4.86) becomes 

Jex(co) » ^ (4.88) 
2,ß 

where terms have been neglected based on the observations that of >> J™™ and 

of ^> a. At high TJR, steady state performance is proportional to the square root of 
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the target power, which is considerably better than the steady state performance of 

the traditional method. However, the performance is not as good as that of the sum 

method, which approaches ^ at high TJR. 

The above analysis is based on the worst case scenario for the signal levels and 

-Xmax- Even though the performance at high TJR is proportional to the square root 

of the target power, for a wide range of signal levels the steady state performance will 

be better than that suggested by (4.87) and (4.88). The steady state performance of 

the nie method can always be improved by increasing the value of Xraax, but that is 

associated with slower convergence. The tradeoff between steady state performance 

and convergence time involved selecting an appropriate value for Xmax is similar to 

that which occurs in selection of the dimensionless step-size parameter, a. Choosing 

a value of Xme.x that is small produces values of B close to unity, resulting in the 

steady state performance described by (4.87) and (4.88). Choosing a larger value of 

Xmax produces better steady-state performance but proportionally longer convergence 

time, which will affect the low TJR cases more adversely. A reasonable choice of Xmax 

can only be made if the range of input signal powers is known. This may be true 

not only for telephone lines, but also for digital systems that perform analog-to- 

digital conversion of the input data. In summary, the nie method has some potential 

for applications when enough information is available a priori to make a reasonable 

choice of Xmax based on information about both the absolute power levels and the 

range of TJRs over which the system operates. 

Signed-error LMS algorithm 

When an application requires reduction in the computational complexity of the LMS 

algorithm, signed algorithms are often used to eliminate the multiplication required 

by the true correlation multiplier, y(n)x(n) in (4.17). Sullivan (1993) summarizes the 

following four signed algorithms, which use these functions to calculate the correlation 

multiplier: 

• Signed product - sign[j/(n)o;(Ti)] 
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• Signed regressor - y(n)sign[a:(7i)] 

• Signed error - sign[j/(7i)]a;(n) 

• Signed maximum - sign[y(n)a;(7i)]min(|y(ra)||a:(ra)|). 

The signed-error algorithm can be analyzed within the framework proposed here, 

because it can be expressed in terms of the traditional LMS algorithm in (4.17) with 

time-varying step-size parameter, fi(n), given by 

L<r2
x\y(n)\ 

Substituting (4.89) into (4.30) gives 

■Moo) = yr^- (4-90) 

If z is a Gaussian random variable with zero mean and variance o-2, then the mean 

of its absolute value, -E[|z|], equals y^ (Mathews and Cho, 1987). Assuming that 

y(n) can be modeled as a zero-mean, Gaussian process, applying this assumption to 

.E?[|y(7i)|] and substituting (4.28) gives 

EUn)\]   =   ^™ (4.91) 

Replacing \y(n)\ in (4.90) with its expected value, substituting (4.92) and rearranging 

yields 

(Jex(oo) + <r\ + Jmin)(-( Jex(oo))2 - a2 Jex(oo) - a2(<72 + J^)) = 0 (4.93) 
7T 

The positive solution to (4.93) is 

^H.^py. (,94) 
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This result is equivalent to the steady-state excess mse for the signed error al- 

gorithm determined by Mathews and Cho (1987). This equivalence can be seen by 

substituting a = 2a' J^ into (4.94), giving 

a'2 + cfy/a* + 4(g? + J^) 
Jex(oo) = * . (4.95) 

The expression given by (4.95) can be obtained from the steady-state standard devia- 

tion of the error given by Mathews and Cho (1987) by accounting for the target signal 

power, squaring their Eq. 39, and subtracting J-^m to obtain the steady-state excess 

mse. In the presence of strong target signals, the steady state performance of the 

signed error algorithm is proportional to the square root of the target signal power. 

Thus, strong target signals affect the signed error algorithm less adversely than they 

affect the traditional algorithm, where the steady-state excess mse is proportional to 

the target signal power. 

LMS algorithm with adaptive damped convergence factor 

Kami and Zeng (1989) suggest a modification to the LMS algorithm intended to 

overcome the fundamental tradeoff between convergence time and steady-state er- 

ror. Their method provides both rapid convergence and reduced misadjustment by 

allowing the step-size parameter to have a large initial value, and then progressively 

reducing the step-size parameter as the error signal converges. Specifically, they ad- 

just the step-size parameter according to 

p(n) = -i-(l - e-^IW»W»)H) (4.96) 
Let. 

X 

where e(n) is the error signal, ß is a damping parameter, and || || denotes the vector 

norm. They suggest that the vector norm can be replaced by the vector norm squared 

for ease of computation. 

It appears that this approach will work as desired in applications with no (or 

weak) target signals. However, for the adaptive noise canceller, the error signal e(n) 
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is obtained from the system output, y(n), which is a poor estimate of the output error 

in the presence of strong target signals. Therefore, strong target signals will cause 

the step-size parameter computed according to (4.96) to increase, leading to increased 

steady-state mse. In order to gain insight into the performance of this method in the 

steady-state, it is assumed that y(n) and x(n) are uncorrelated (which is valid if4he 

weights are converged to their optimal values so that E[y2(n)] « Jm;„ + cr2). Using 

the vector norm squared and replacing ||x||2 with its expected value, Lai, yields 

^cxp(n) = y^(l - e-*M**) (4.97) 
x 

Substituting (4.97) into (4.30) produces 

J«(°°) = (1 + e-ftW**) ■ (4-98> 

When the target signal is strong, so that the exponential term approaches zero, (4.98) 

becomes 

Jex(oo) = Jmia + a\. (4.99) 

Like the traditional method, this method of adjusting the step-size parameter causes 

the expected value of the excess mse to be proportional to the target signal power, 

leading to poor performance in the presence of strong target signals. 
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Chapter 5 

Intermicrophone correlation for 

target-to-jammer ratio hypothesis 

test 

5.1     Introduction 

As discussed in Sec. 2.3.1, the performance of adaptive systems degrades at high 

target-to-jammer ratios. Greenberg and Zurek (1992) proposed computing a running 

measure of intermicrophone correlation, a metric related to the short-term TJR, and 

then inhibiting the adaptive process when the correlation exceeds some threshold. 

This is appropriate for the hearing-aid application because speech signals exhibit a 

high degree of power fluctuations, so the short-term TJR will contain pauses that 

allow adaptation even when the long-term TJR exceeds the threshold. 

The purpose of this chapter is to investigate controlling adaptation based on the 

correlations between pairs of microphones. The basic idea is to compute running 

measurements of correlation for pairs of microphones for each iteration of the process. 

These correlation measures are combined and compared to a threshold value. If the 

correlation measure exceeds the threshold, then the decision is that the TJR is "high" 

and the adaptive weights remain at their previous values. If the correlation measure 

is less than the threshold, then the decision is that the TJR is "low" and the adaptive 
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weights are updated. 

In this approach, the threshold is applied to the correlation measure, and the 

decision corresponds to whether or not the TJR falls within one of two ranges. This is 

a simpler problem than attempting to estimate the TJR from the correlation measure. 

Other researchers have considered similar mechanisms to permit adaptation in 

intervals of low TJR and prevent adaptation in intervals of high TJR. Those methods 

rely on measures of the energy in the input signals to determine whether adaptation 

should be enabled or disabled. The methods proposed by Van Compernolle (1990a,b) 

and by Harrison et al. (1986) rely on the assumption that the long-term TJR is 

always positive. The methods described by Kaneda and Ohga (1986) and by Sondhi 

and Berkley (1980) are based on additional information about the presence or absence 

of the target signal that is not available in the hearing aid application. 

Kompis (1993) proposed the sigma-delta method to control adaptation of a two- 

microphone generalized sidelobe canceller.1 This method uses the ratio of power in 

the primary signal to the sum of the powers in the primary and reference signals. He 

evaluated this method and compared it to two other methods, the intermicrophone 

correlation used by Greenberg and Zurek (1992) and a multidimensional correlation 

method based on the cross-correlation function between the two microphone signals at 

time lags ranging from —0.8 ms to +0.8 ms. For the conditions used in the evaluation, 

the multidimensional correlation provides the best results, but also requires the most 

computation. In the remainder of his work, Kompis uses the sigma-delta method 

because it provides acceptable performance at low computational complexity. 

This chapter investigates controlling adaptation at high TJR based on the corre- 

lation between microphones as proposed by Greenberg and Zurek (1992). It considers 

previously neglected issues such as criteria for selecting the correlation threshold, the 

effect of reverberation, and incorporating information from multiple pairs of micro- 

phones. The following section contains an analysis of the relationship between the 

intermicrophone correlation and the TJR; the intermicrophone correlation is used as 

a decision variable for choosing between the "low" and "high" TJR hypotheses. It is 

1This method is also described in Dillier et al. (1993). 

83 



followed by simulations demonstrating its effectiveness. 

5.2    Analysis of inter microphone correlation for 

determining TJR 

This section contains an analysis of the intermicrophone correlation as a means of 

determining TJR. It starts with a derivation of the probability density function (pdf) 

of the intermicrophone correlation for a single directional source arriving from a range 

of angles. The pdf for a single source is then used to derive the pdf for two directional 

sources arriving from different ranges of angles, conditioned on the relative strengths 

of the sources (TJR). It is assumed that within the ranges of angles defining target 

and jammer sources, all angles of incidence are equally likely. Next the effect of 

reverberation is included in the pdf. Then, binary hypothesis testing (Van Trees, 

1968) is used to determine a threshold on the correlation that corresponds to the 

desired ranges of TJR. Several methods are proposed for combining the correlation 

measures from different pairs of microphones. 

5.2.1     Probability density functions 

Correlation of one directional source 

To derive the pdf of the intermicrophone correlation for a single source, consider one 

source arriving from an unknown angle of azimuth in the horizontal plane, denoted 

8. If it is assumed that all angles of incidence are equally likely, 8 can be treated 

as a random variable with uniform density on the interval Q\ < 6 < 82- Under this 

assumption, the probability density function is 

'••«" = wr^j (51) 

for 6X < 8 < 82. 

Assuming plane-wave propagation, the time delay between the signals arriving at 
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two microphones in free space is 
d 

r=-sinö (5.2) 
c 

where d is the intermicrophone spacing, c is the speed of sound, and 6 is zero when 

the source is oriented broadside to the two microphones. The normalized correlation 

coefficient, p„, between the two microphone signals for a pure tone source of frequency 

/ arriving with time delay r is 

cos (27T/T) (5.3) 

(Cremer and Müller, 1982), and substituting (5.2) gives 

pa = cos I sinö ) = cos(kdsm6), (5-4) 

where the wavenumber k is 
,      2TT/ 

(5.5) 
c 

The pdf for p„ can be derived from (5.1) and (5.4) using standard methods for 

deriving pdfs of functions of random variables. The resulting pdf for the intermicro- 

phone correlation of a single narrowband directional source is 

fp.(p) =  1 (5.6) 
(02 - 01)y/(ki)* - (axccos p)*y/T=? 

for cos(kdsm62) < p < cos(kdsin0i). 

Now consider the cases of target and jammer individually. The target signal is 

defined as any source arriving at the microphones from a range of angles near straight 

ahead (zero degrees azimuth in the horizontal plane). Because the cosine function 

is even, positive and negative angles produce the same values of intermicrophone 

correlation. Therefore, negative angles can be ignored and the range of angles for 

the target signal is restricted to 0 < 6 < 90, where 60 is a relatively small angle. 

Substituting Q\ = 0 and Ö2 = $0 into (5.6) produces the pdf for a directional target 
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signal, 

IM =  ; (5-7) 
90J(kd)2 — (arccos p)2\/l — p2 

for cos(kdsm90) < p < 1. 

Similarly, the jammer signal is defined as any source arriving at the microphones 

from any direction outside the range of target angles. Because the correlation does 

not distinguish between signals arriving from the front and the rear, for this analysis, 

signals arriving within 90 of 180° are not included in the definition of jammer. Fur- 

thermore, because of the symmetry of the sine function, angles larger than 90° can 

be ignored along with the negative angles. Substituting 9\ = 90 and 92 = f into (5.6) 

produces the pdf for a directional jammer signal, 

fp-(p) =  1 (5.8) 
' (f - 90)y/(kd)2 - (arccospfy/T^ 

for cos{kd) < p < cos(fcrfsinöo). 

The pdfs for a single directional target and a single directional jammer described 

by (5.7) and (5.8) are shown in Fig. 5.1 for 90 = arcsin(|) = 14.5° and for several 

values of kd. 

Next, consider the case of two independent directional sources, one target and one 

jammer. The total intermicrophone correlation, pd, is the normalized, weighted sum 

of the target and jammer correlations, given by 

_ ofpt + cr}pj = Ypt + pj 
a2 + a? Y + l pd = W-r   ?' = ^f^ (5-9) 

where of and a2 are the target and jammer signal powers, and Y = ■£, the target- 

to-jammer ratio. The pdf of the sum of two independent random variables is the 

convolution of their two pdfs. Since pt and pj are random variables with known pdfs, 

the pdf of pj, conditioned on Y, denoted fPi\Y{p\Y), can be determined by convolving 

(5.7) and (5.8), with appropriate scaling by Y and ^-.  This is shown easily with 
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Figure 5-1: Probability density functions for the correlation of single source described 
by (5.7) and (5.8) for three values of kd. 
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the use of the intermediate variables: 

Then the pdfs are 

p't = YTi^ (5-10) 

Pä   =   p't + p'j. (5.12) 

Y + I    /y+i\ 
U\r(p\Y) = -y-fPt (-^r-p) , (5-13) 

/^i|y(p|lr) = (lr + l)/«((y + lH (5-14) 

and 

=   /«(^»a^ + lH (5-15) 

Closed form solutions could not be found for the integrals that result from sub- 

stituting (5.7) and (5.8) into (5.15), so the following approximation was used. From 

Fig. 5.1, it can be seen that a reasonable approximation for fPt(p) *s given by a con- 

stant over the range cos(&<2sin0o) < p < 1 plus an impulse at p = 1. The constant 

is selected so that the area under the constant portion equals | and the area of the 

impulse is |.2 This approximation for the target pdf is given by 

^=2(l-cos(Msin*,))+^''-1> <5'16> 

for cos(fcdsinoo) < p < 1, where 8 is the unit impulse function. Figure 5.2 shows a 

comparison between this approximation and the pdf described by (5.7) for 60 = 14.5° 

and several values of kd. 

The conditional pdf is obtained by substituting (5.16) and (5.8) into (5.15). The 

2These values were chosen because the target pdf evaluated at the lower limit on p [pto — 
cos(fcdsinöo)] is close to >x°^ \ for a range of values of öo and kd. Specifically, ft5

p°t0 < fPt(pto) < 

^- for 10° < 0o < 15° and 0 < kd < TT. 
l—Pto 
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Figure 5-2:    Original and approximate probability density functions for the tar- 
get-source correlation described by (5.7) and (5.16) for three values of kd. 
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resulting convolution is performed in Appendix A, and the results are reproduced 

here: 

fPMp\Y) 
Y + l 

2F(f - 0O)(1 - cos(fcdsin 0O)) 

 arcsm 
2 

+ 

(arccos((Y + l)p — F cos(A;<f sin0o))\ I , , s       , M 
 —j^ -I    HP ~ Pi) - HP ~ P2a)] 

Y(l-cos{kdsm80))   

y/ktP - (arccos(p(F + 1) - Y))2y/l - {p(Y + 1) - Yf 

.   (*xcco&((Y+l)p-Y)\            .    /arccos((y + l>-Fcos(A!dsmöo))> 

+ arCSm [ kd J " arCSm [ kd 1 
[u(p - p2a) ~ U(p - psa)] 

Y(l - cos(kdsm80))  
+ 

arcsm 

yjkd? - (arccos(/0(y + 1) - Y)fy/l - (p(Y + 1) - Y)2 

arccos((r + l)/J-y)> 

kd 
-e0 [u(p - p3a) - U(p - pA)} (5.17) 

for Y < Y0 and 

fPMp\Y) = 
Y + l 

2Y(f - 0O)(1 - cos(fcdsin 60)) 

IT .   fajccos((Y + l)p — Ycos(kdsin60)y 
— — arcsm    —  
2 \ kd 

+ (i ~ e°) ^u ^ ~p2b^ ~u(p~~p3b^ 
Y{l-cos(kdsm60)) 

[u(p - Pl) - u(p - p2a)} 

+ 
jkd? - (arccosMF + 1) - Y)fy/l - (p(Y + 1) - Yf 

Hp - p3a) - u(p - p4)] | 
.    [<iiccos((Y + l)p-Y)\ 

3X08111 { kd J ~ 9\ 

for Y > Y0, where 

Y0 

cos(fcisin 60) — cos(kd) 

(5.18) 

(5.19) 
1 — cos(/sdsin0o) 

Figure 5.3 shows the conditional pdf fPd\Y{p\Y) given by (5.17) or (5.18) for several 
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Figure 5-3: Probability density functions for the correlation of two sources described 
by (5.17) and (5.18), conditioned on TJR and for three values of kd. 

values of Y and kd. 

5.2.2     Correlation in reverberation 

The above derivation of the pdfs only considered the direct target and jammer signals. 

The next step is to include reverberation. 

As a first approximation, assume that the reverberant portion of the signals can be 

modeled as a diffuse sound field.3 With this assumption, the direct and reverberant 

portions of the signal will be independent. As seen earlier for combining correlations of 

independent target and jammer, the total correlation, ptot, is the normalized, weighted 

3Note that this approach neglects early reflections. 
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sum of the direct and reverberant correlations, given by 

ptot =   o»i + o>   = -WTT (5-20) 

where a\ and a\ are the direct and reverberant signal powers, and W = ■££, the 

direct-to-reverberant ratio. The intermicrophone correlation of a diffuse sound field 

is 

» = ~ÜT (5-21) 

(Cremer and Müller, 1982). Note that this applies to the reverberant portion of 

both the target and jammer signals. Furthermore, for a particular value of kd, the 

correlation of the diffuse field is a constant. Substituting (5.21) into (5.20) gives 

A- = w\ r (6-22) 

Treating the direct-to-reverberant ratio, W, as an unknown constant, the total 

correlation, ptot, is a random variable with a conditional pdf related to the conditional 

pdf of the direct correlation pd, given by (5.17) and (5.18). The effects of pT and W 

are to shift the range of ptot over which the pdf is nonzero by £ffi^ and to reduce 

the range of ptot over which the pdf is nonzero by a factor of p^j. 

Figure 5.4 shows the relationship between pd and ptot given by (5.22). Each plot in 

Fig. 5.4 shows the relationship between the direct correlation and the total correlation 

for a single value of kd and five values of W ranging from 0.1 to 10 (-10 dB to +10 

dB). The slope of each line is ypr[, which approaches zero for small W and approaches 

one for large W. For each value of kd, the lines for different values of W all intersect 

at ptot = Pd = sJs^-, which can be verified by substituting pd = sJ^ into (5.22). 

This result has important implications for threshold selection, as discussed in the next 

section. 
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5.2.3    Hypothesis testing 

Binary hypothesis test 

As discussed in Sec. 5.1, the goal is to use the correlation measure as the observation in 

a binary hypothesis test (Van Trees, 1968). The two hypotheses are TJR< 0 dB (HO 

= "low" TJR) and TJR> 0 dB (HI = "high" TJR), although the following approach 

could be applied to any pair of ranges of TJR. The cutoff is set to 0 dB because, 

as discussed in Sec. 2.3.1, the detrimental effects of misalignment and misadjustment 

are proportional to TJR and are typically noticeable at positive values of TJR. 

Correctly determining that HO is true (correctly saying TJR< 0 dB) will be re- 

ferred to as a detection and results in adapting under the desired circumstances. 

Incorrect determination of HO (saying that TJR< 0 dB when actually TJR> 0 dB) is 

a false alarm and results in adapting when it is undesirable. Incorrect determination 

of HI (saying that TJR> 0 dB when actually TJR< 0 dB) is a miss and results m 

not adapting under circumstances when adapting was desirable. 

Of the two types of errors, false alarms are potentially more damaging than misses, 

because adapting when it is undesirable may degrade the signal, while not adapting 

when it is desirable only slows the convergence of the adaptive weights. Selecting the 

threshold on the correlation to distinguish between the two hypotheses controls the 

tradeoff between misses and false alarms.* Because of the nature of this tradeoff, it as 

difficult to quantify the costs associated with these two types of errors. Qualitatively, 

it is reasonable to permit a relatively high rate of misses in order to obtain a lower 

rate of false alarms. 

In previous sections, the TJR, Y, has been considered an unknown constant, but in 

order to formulate the problem as a hypothesis test, it is necessary to assume a known 

distribution. Obviously, some degree of approximation is required in making such an 

assumption. Previous studies have shown that conversations in noisy environments 

often occur at long-term TJRs of 1-5 dB (Plomp, 1977; Teder, 1990).   Short-term 

inherent in selection of the step-size parameter, /i, in (4.17), where smaller v 
misadjustment at the cost of longer convergence times. 
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fluctuations in speech level typically range from 18 dB above to 12 dB below the 

average power level (Kryter, 1962). In the following analysis, it is assumed that the 

TJR is evenly distributed on the range -20 dB to +20 dB, so that 

fu.iU) = ^ (5.23) 

for -20 dB < Us < +20 dB, where 

*7=101og10F. (5.24) 

The sensitivity of the analysis to this assumption is considered below. Note that one 

result of this assumption is that the two hypotheses, HO and HI, are equally likely. 

First considering the case of no reverberation, the pdf of pd conditioned on the 

two hypotheses HO and HI is found by integrating the conditional pdf given by (5.17) 

and (5.18), that is, 

fPd\Ho(p\H0) = f  fPdlY(p\Y)dU (5.25) 
J—20 

r+20 
fPdlBi(p\Hl) = I      fPdlY(p\Y)dU (5.26) 

vQ 

where Y = 10 '10. These two integrations were performed numerically using the 

trapezoidal rule to produce the curves shown in Fig. 5.5. 

For a particular threshold, p0, the probability of detection is 

/Po 

x fPd\m(p\H0)dp (5.27) 

Similarly, the probability of false alarm is 

/Po 

a fPd\Hi{P\Hl)dp, (5.28) 

while the probability of a miss is 

Pm = l-Pf. (5.29) 
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Figure 5-5: Probability density functions for the correlation of two sources described 
by (5.25) and (5.26), conditioned on the hypotheses HO and HI described in the text, 

for three values of kd. 
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Figure 5-6: Receiver operating characteristic for binary hypothesis testing for three 
values of kd. The points labeled with 'x' indicate the performance when the thresh- 
old, p0, is zero and the points labeled with V indicate the performance when 
po = 0.1,0.2,..., 0.8. 

Again performing these integrations numerically for values of po in the range — 1 < 

Po < 1 and plotting P<j versus Pf produces the receiver operating characteristic (ROC) 

curves shown in Fig. 5.6. Figure 5.6 shows that for any choice of threshold, the best 

performance is obtained with kd = TT. 

Substituting (5.5) into the choice of kd = 7r and rearranging results in 

^      2d' 
(5.30) 

For each microphone spacing, the correlation measure providing the most accurate 
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decision of the range of TJR is produced at a different frequency; for a microphone 

separation of d = 7cm, that frequency is / = 2464 Hz. Based on the ROC curves of 

Fig. 5.6, frequencies selected based on kd = x, and therefore (5.30), will be used in 

the remainder of this work. 

Next, consider the effect of reverberation, as described by (5.22). The presence of 

reverberation causes the conditional pdfs shown in Fig. 5.5 to be shifted and scaled 

along the abscissa, because (5.25) and (5.26) are now integrals of a random variable 

shifted and scaled as in (5.22). However, since the magnitude of the scaling and 

shifting is identical for the pdfs corresponding to both hypotheses, the ROC curves 

in Fig. 5.6 are unchanged for any level of reverberation.5 Therefore, if the level of 

reverberation is known, then the transformation between pd and /9tot is known and it 

is possible to select a threshold, po, that will produce performance corresponding to 

a desired point on the ROC curve when applied to ptot. However, when the level of 

reverberation is unknown, then a single threshold, po, applied to the total correlation, 

Ptot, maps to a range of values of pd, corresponding to a range of values on the ROC 

curve. This issue is discussed in the next section. 

Finally, the sensitivity of this analysis to the assumption that the TJR is evenly 

distributed between —20 and +20 dB is considered. The two curves in Fig. 5.7(a) 

show Pd and Pf versus threshold for kd = ir. (The ROC curve in Fig. 5.6 was produced 

from the same values of Pd and Pf.) The curves in Fig. 5.7(b) show the probability 

that the correlation is below the threshold, versus threshold, for individual values of 

TJR. When the TJR is less than 0 dB, the curve corresponds to Pd for that value 

of TJR. Similarly, when the TJR exceeds 0 dB, the curve corresponds to Pf for that 

value of TJR. The two curves in Fig. 5.7(a) can be thought of as the integrals of 

all such single TJR curves within the two ranges of -20 dB < TJR < 0 dB and 0 

dB < TJR < 20 dB. Because of the similar shapes of these curves and the relative 

symmetry of the contributions at positive and negative TJRs, the ROC curves shown 

5Theoretically, this is true for any level of reverberation. In practice, in extreme reverberation 
(as the direct-to-reverberant ratio, W, approaches zero) the location on the ROC curve becomes 
increasingly sensitive to the threshold value, and the shape of the ROC curve becomes increasingly 
sensitive to the assumptions regarding the probability distributions. 
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Figure 5-7: (a) Cumulative probability distributions for the correlation of two sources 
with two ranges of TJR: -20 dB<TJR<0 dB and 0 dB<TJR<20 dB. (b) Cumulative 
probability distributions for the correlation of two sources with specified TJR ranging 
from -20 dB to 20 dB. 

in Fig. 5.6 are relatively robust to violations of the assumption that the TJR is evenly 

distributed between —20 and +20 dB. 

Choice of threshold 

Based on the above analysis, it is possible to select the threshold to achieve a desired 

result. Perhaps the most obvious option is to choose threshold p0 = ^ ^ , because, 

as seen in Sec. 5.2.2, at that point pd and ptot are equal for any level of reverberation, 

so with that threshold, the performance will correspond to a single point on the ROC 

curve for all levels of reverberation. Each curve in Fig. 5.6 is labeled with £x' at the 
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point corresponding to p0 =    £d '. 

One drawback to this approach concerns the distribution of errors as a function 

of jammer angle. Figure 5.6 shows that for kd = ir and po = kd ~ ^, the detection 

rate is greater than 75%, so the system will miss more than 25% of the time when 

TJR < 0 dB. This would not be a problem if these errors were distributed more or 

less evenly over jammer angle, because, as discussed earlier, it is reasonable to permit 

some misses to obtain a low rate of false alarms. However, these misses are not evenly 

distributed, rather they are concentrated where correlation is high, which corresponds 

to small jammer angles. 

To illustrate this, consider the correlation produced by a single jammer arriving 

from angle 9 given by (5.4). With kd = ir,p = 0.69 for 6 = 15° and p = 0 for 6 = 30°. 

So with the threshold set to p0 = 0 and with no target signal present, the system will 

not adapt in the presence of jammers arriving from angles between 15° and 30°. This 

range of angles is slightly higher for values of kd < it. And when the target signal is 

included, this range of angles extends beyond 30°, increasing with TJR. 

In the remainder of this work, the threshold will be set to p0 = 0 (that is, p0 = 

sinVf) for kd = 7r), and it is accepted that the system will not adapt in response to 

jammers at angles below 30°. This is reasonable since the original choice of 60 = 14.5° 

was somewhat arbitrary and since little is known about how such systems will be 

affected by head movements when worn by human listeners. However, when real-time 

adaptive multiple-microphone systems are designed for field tests, it is suggested that 

a user input control the threshold selection. In this manner, the user can adjust 

the effective beamwidth of the system over some range, but the cost of narrower 

beamwidths is higher false alarm rates, resulting in potential degradations of the 

target signal at high TJR. 

For these future systems, it will be useful to quantify the effect of increasing the 

threshold. This corresponds to moving to the right along the ROC curve, so that Pf 

increases together with Pd- The problem is that for unknown levels of reverberation, 

it is not possible to determine a mapping between the threshold and the location on 

the ROC curve. For example, if the threshold on ptot is p0, then with no reverberation, 
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performance is the same as for pd = po, with a direct-to-reverberant ratio of 0 dB, 

performance is the same as for pd = 2p0, and with a direct-to-reverberant ratio of -10 

dB, performance is the same as for pd = llpo- 

To illustrate this effect of reverberation on performance, in Fig. 5.6 the ROC 

curve corresponding to kd = IT is labeled with V at points corresponding to po = 

0.1,0.2,..., 0.8. As an example, if the threshold were set to p0 = 0.3, then the maxi- 

mum angle of an undetected jammer (with no target present) would decrease to 24°. 

The detection and false alarm rates would range from Pd = 0.84 and Pf = 0.09 (for 

Pd = Po = 0.3) in no reverberation to Pd = 0.94 and Pf = 0.26 (for pd = 2p0 = 0.6) 

with a direct-to-reverberant ratio of 0 dB. (direct-to-reverberant ratio of 0 dB). The 

false alarm rate would be much higher for direct-to-reverberant ratios below 0 dB. 

However, when the reverberation dominates, the effect of these errors may be less 

severe. 

Furthermore, (5.22) suggests that as reverberation increases, the fluctuations in 

the correlation measure due to the direct target and jammer signals decreases. There- 

fore, if it were necessary to determine the direct-to-reverberant ratio of the acoustic 

environment, it might be possible to estimate that quantity from the variance of the 

correlation measurement over a reasonably long interval. 

Determining broadband TJR 

The preceding narrowband analysis has considered using a correlation measurement 

from one pair of microphones as a decision variable in the TJR hypothesis test for 

a particular frequency. However, the proposed method of controlling the adaptive 

process actually requires a single global decision as to the range of the broadband 

TJR. This raises two questions. First, if only two microphones are available, how 

accurately can the range of the broadband TJR be determined from a measure based 

on the narrowband analysis? Second, if more than two microphones are available, 

how can the information from different pairs of microphones be combined to generate 

the most accurate decisions concerning the range of broadband TJR? 

In addressing the first question, it should be noted that the correlation measure- 
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ment corresponding to each, microphone pair will not be based on a single frequency, 

rather, it will be computed for the portion of the signal in a relatively narrow band 

about the frequency, /, determined by (5.30). The sensitivity of the proposed method 

to varying bandwidth will be investigated in computer simulations in the next section. 

For arrays of more than two microphones, a different correlation measurement can 

be obtained from each pair of microphones. If different pairs of microphones have 

different spacings, then they will provide correlation measurements based on different 

frequencies, according to (5.30). To address the second question, three methods of 

combining correlation measures are proposed. The first method, voting, consists of 

first comparing each correlation measurement to the threshold, and then using the 

majority of those decisions to determine the outcome. The second method, averag- 

ing, consists of first averaging the correlation measurements and then comparing the 

average to the threshold. The third method, power-weighted averaging, is the same 

as averaging except that each correlation measurement is first weighted by a running 

measure of the power in the corresponding frequency band. All three of these methods 

will be investigated in computer simulations in the next section. 

5.3     Simulations 

The simulations in this section are intended to illustrate the utility of the method 

analyzed in Sec. 5.2. A block diagram of the system for determining the range of 

short-term TJR is shown in Fig. 5.8. First, each pair of microphone signals is band- 

pass filtered. The arithmetic center frequency of the bandpass filter is determined 

from the microphone spacing and (5.30). Next, the instantaneous correlation is com- 

puted using a hard limiter, as in Greenberg and Zurek (1992), resulting in a binary 

quantity that is the product of the signs of the bandpass filtered signals.6 The in- 

stantaneous correlation is then smoothed by a first-order recursive lowpass filter with 

6The hard limiter is used to simplify the implementation in real-time systems. In addition to 
replacing multiplies with sign-bit comparisons, the hard limiting eliminates the need to divide by 
the square root of the signal powers, which would otherwise be needed for a normalized correlation 
measure. 
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Figure 5-8: Block diagram of system to determine range of TJR. Each pair of mi- 
crophone signals is bandpass filtered, the signs of the bandpass filtered signals are 
multiplied to produce the instantaneous correlation, and these values are smoothed 
by a first-order lowpass filter with a time constant of 10 ms. The lowpass filtered 
correlation values are combined and compared to the threshold by one of the three 
methods described in the text. The result is a binary decision about the range of 
TJR, TJR < 0 dB or TJR > 0 dB. 

a time constant of 10 ms. This value was chosen because it is suitable for tracking 

the fluctuations in speech levels (Greenberg, 1989). Finally, the lowpass filtered cor- 

relation values from all frequency bands are combined and compared to the threshold 

according to one of the three methods (voting, averaging, or weighted averaging) de- 

scribed in Sec. 5.2.3. The result is a binary decision about the range of TJR, TJR < 

0 dB or TJR > 0 dB, that determines whether or not the adaptive weights should be 

updated. 
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5.3.1     Noise 

The first set of simulations are intended to verify the analysis of Sec. 5.2 and to 

investigate the robustness of the algorithm to variations in bandwidth. 

For these simulations, the target and jammer sources were 14000 samples of zero- 

mean Gaussian noise. The jammer source had unit variance. The target source was 

scaled to produce a TJR that was constant over 1000-sample intervals, incrementing 

in 3 dB steps between -19.5 and 19.5 dB. 

These source signals were convolved with anechoic source-to-microphone impulse 

responses generated by the room simulation described in Sec. 3.2. The array contained 

two microphones with 7 cm spacing. The target angle varied from 0 to 12 degrees and 

the jammer angle varied from 18 to 90 degrees, both in 4 degree increments. For all 

76 combinations of target and jammer angles, the running correlation was computed 

as shown in Fig. 5.8 and compared to a threshold of p0 = 0. For comparison, the 

running correlation was also computed without the hard hmiter. The bandpass filter 

had a center frequency of 2464 Hz, computed from (5.30). The filter bandwidth varied 

from 10% to 180% of the center frequency (246 Hz to 4435 Hz), and was centered 

arithmetically. 

For each sample point, the binary result of the processing was compared to the 

true TJR. Since TJR < 0 for the first half of the source signals and TJR > 0 for the 

second half, the detection rate was computed from the first 7000 points and the false 

alarm rate was computed from the last 7000 points. These values of Pd and Pf were 

averaged for all combinations of target and jammer angles. The results are shown in 

the left half of Fig. 5.9. For a wide range of bandwidths, Pd fa 0.7 and Pf < 0.1. 

The analysis in Sec. 5.2.3 indicates that for p0 = 0 and kd — IT the probabilities 

of detection and false alarms are Pd = 0.73 and Pf = 0.007. This corresponds to 

the points marked with 'x' on the upper curve in Fig. 5.6 and with V in Fig. 5.9. 

In general, there is good agreement between the values predicted by the analysis of 

Sec. 5.2.3 and the results of the simulations. Several factors are responsible for both 

the discrepancies between the analysis and the simulation results and the trends in 

the simulation results.   Those factors will be discussed after first summarizing the 
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Figure 5-9: Simulation results showing rates of detection and false alarms, as a func- 
tion of bandwidth, for noise received by two microphones in an anechoic environment. 
The points labeled with 'x' indicate the performance using the hard limiter (taking 
the sign of bandpass filtered signals as shown in Fig. 5.8), while the points labeled 
with 'o' indicate the performance without the hard limiter (the bandpass filtered sig- 
nals are multiplied directly). The points labeled with '*' correspond to the values 
determined by the narrowband analysis of Sec. 5.2.3. 
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relationship between correlation measures, thresholds, and false alarm and detection 

rates. 

The system shown in Fig. 5.8 is credited with a correct detection when the mea- 

sured correlation is less than the threshold (p < p0) and the true TJR < 0 dB. False 

alarms occur when p < p0 and the true TJR > 0 dB. Increasing the threshold in- 

creases the rate of both detections and false alarms (moving to the right on the ROC 

curve), while decreasing the threshold decreases the rate of both detections and false 

alarms (moving to the left on the ROC curve). Any factor that causes the measured 

correlation, p, to decrease will have the same effect as raising the threshold, po, and 

conversely, anything that causes the measured correlation to increase will have the 

same effect as lowering the threshold. 

The most striking discrepancy between the analysis and simulation results is the 

relatively low false alarm rate predicted by the analysis. This results from the approx- 

imation in (5.16) used for the target pdf. The approximation overrepresents 6t = 0 

and underrepresents all other 0 < 6t < 6Q. This causes the analysis results to be 

biased towards 6t = 0, which contributes higher correlation values. The higher corre- 

lation values cause the analysis to predict lower rates of detection and false alarms. 

This approximation has much more of an impact on the false alarm rates, because 

it only affects the target signal's contribution to correlation, and false alarms occur 

when the target signal dominates (TJR> OdB). 

Figure 5.9 illustrates the effects of varying bandwidth. The original analysis was 

performed for narrowband sources. Obviously, using wideband signals will include 

additional frequencies in the computation of p. The effect of these frequencies depends 

on the source angle. For a rectangular band of noise arithmetically centered at / with 

bandwidth B, the mean correlation value is given by 

p = ooB(2x/r)^gll (5.31) 

(McConnell, 1985). Substituting (5.2) and (5.30) into (5.31) gives the relationship 

between source angle and correlation for kd = ir for arbitrary bandwidth as a fraction 
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Figure 5-10: Theoretical relationship between correlation and source angle, for frac- 
tional bandwidths as indicated, ranging from 0.1 to 1.8. 

of center frequency, that is, 

p = cos(7rsin(0)) 
sin(7r-sin(ö)) 

(5.32) 

where b is the fractional bandwidth —. Figure 5.10 illustrates this relationship for 

several fractional bandwidths. In Fig. 5.10 the curve for b = 0.1 is indistinguishable 

from the pure cosine obtained for a narrowband source. 

From (5.31) and Fig. 5.10 it is clear that the effect of increasing signal bandwidth 

is to decrease the magnitude of the correlation value. For source angles less than 30°, 

wideband signals provide smaller positive values while for source angles greater than 

30°, they provide smaller negative values. Furthermore, the magnitude of this effect 
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is more pronounced for jammers (15° — 90°) than for targets (0° — 15°). Therefore, 

the effect of increasing the bandwidth is to increase the correlation measure, leading 

to lower rates of detection and false alarms.7 

Another factor that affects the performance of the correlation measure is the 

use of a hard limiter to compute the instantaneous correlation. For Gaussian sig- 

nals, the relationship between the hard-limited correlation and the true correlation is 

pm = ?■ arcsin(ptme) (Papoulis, 1984). The result of this arcsine transformation is to 

compress the relationship between TJR and p near p = 0, which may lead to more 

errors in both directions, that is, increased false alarms and decreased detections. 

Figure 5.9 shows the results of simulations with and without hard limiting. Although 

the effect of hard limiting is to increase errors, the increase is slight, and for many 

applications may be worth the savings in computational complexity.8 

Finally, as discussed in Sec. 5.2.3, the errors are not distributed evenly as a function 

of jammer angle, rather, the "misses" are concentrated when jammer angle is small. 

The right half of Fig. 5.9 shows Pd and Pf when jammer angles between 18 and 34 

degrees are ignored. For the range of jammer angles between 38 and 90 degrees, 

the overall performance is much better, with Pd « 0.9, and only a slight increase in 

Pf. To illustrate the dependence on jammer angle, Fig. 5.11 shows Pd and Pf as a 

function of jammer angle for a fractional bandwidth of 0.67. The four curves in each 

panel show the performance for the four target angles, 6t = 0,4,8,12°.   Again the 

7This explains the general trend of decreasing Pd and Pf with increasing bandwidth, but not the 
initial increase seen in Fig. 5.9. Because the detection and false alarm rates described by (5.27) and 
(5.28) correspond to the area of the measurement's conditional pdf that is below the threshold, those 
values depend on the entire pdf, not just its mean. For the fractional bandwidths studied (0.1 to 
1.8), the variance of the correlation value was observed to decrease with increasing bandwidth. This 
is because the wider bandwidths contain more frequencies, making the result less sensitive to the 
fluctuations of individual frequency components. For some conditions of target angle, jammer angle, 
and TJR, as the bandwidth increased, this secondary effect of decreasing variance was sufficient to 
cause increases in Pf and Pd, despite the increase in the mean of the correlation measure. This 
accounts for the non-monotonicity of the simulation results in Fig. 5.9. 

8The purpose of the hard limiter is to replace multiplies with sign-bit comparisons and eliminate 
the need for normalizing the correlation measure. However, when the threshold is zero, only the sign 
of the correlation measure is relevant, and the normalization is not required, since it will not affect 
the sign of the resulting correlation measure. Therefore, when the threshold is zero, it is possible 
to eliminate the hard limiter, especially on hardware platforms that require the same resources for 
multiplication as for sign-bit comparison. 
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Figure 5-11: Simulation results showing rates of detection and false alarms, as a 
function of jammer angle, for noise received by two microphones in an anechoic en- 
vironment. The fractional bandwidth was 0.67, and results are shown for four target 
angles, 6t = 0, 4, 8, and 12° . 

TJR varied in 3 dB steps from -19.5 dB to 19.5 dB. Figure 5.11 shows that there is 

essentially no detection of TJR< OdB when jammers are located at angles less than 

30 degrees and a rapid transition in the detection of TJR< OdB when the jammer 

angle changes from 30° to 40°. Similarly, the false alarm rate increases with increases 

in either target angle or jammer angle. 

5.3.2     Speech 

The second set of simulations are intended to investigate the effect of speech sources 

and reverberation. These simulations included both two- and five-microphone arrays. 
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The target and jammer sources were sentences and babble prepared as described in 

Sec. 3.1. The source signals were scaled so that the long-term TJR was 0 dB. 

Two-microphone array 

The 7-cm, two-microphone broadside array was evaluated using three sentences and 

babble for each of the 76 combinations of target and jammer angles. All of the 

processing was the same as for the noise sources in the previous section. The hard 

limiting was included in the processing. 

The performance was evaluated by averaging the rates of detection and false 

alarms for all conditions and comparing to the true TJR. The true TJR was de- 

termined by squaring the target and jammer signals received at the leftmost9 mi- 

crophone, processing the squared signals with the same 10 ms lowpass filter used to 

smooth the correlation measure, and computing the ratio of the two filtered signals. 

The values of Pd and Pf were computed in two ways, by comparing the binary deci- 

sion to the true broadband TJR, and by comparing it to the true bandpass TJR in 

the frequency band used to compute the correlation measure. 

Figure 5.12 shows the results. The general trends in performance with speech 

signals follow the trends seen in Fig. 5.9 with noise. As would be expected, the 

performance is better (higher detection rate and lower false alarm rate) when it is 

referenced to the TJR in the frequency band used by the correlation measure than 

when it is referenced to the broadband TJR. 

Comparing Fig. 5.12 with Fig. 5.9 does show some differences in the results ob- 

tained with speech and noise. The two most significant differences consist of a drastic 

reduction in detection rate at large bandwidths and an overall increase in the false 

alarm rate. 

The lower detection rates for large fractional bandwidths is due to the difference 

between noise and speech source signals. Unlike the noise used in the previous section, 

the frequency components of speech are not evenly distributed within the band of 

interest.   This makes the performance more sensitive to increased bandwidth, and 

9when facing the target 
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Figure 5-12: Simulation results showing rates of detection and false alarms, as a 
function of bandwidth, for speech and babble received by two microphones in an ane- 
choic environment. The points labeled with 'x' indicate the performance referenced 
to the bandpass TJR, while the points labeled with 'o' indicate the performance ref- 
erenced to the broadband TJR. The points labeled with '*' correspond to the values 
determined by the narrowband analysis of Sec. 5.2.3. 
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accounts for the low rate of detection for fractional bandwidths greater than unity. 

The overall increase in the false alarm rate is due to the range of TJRs available in 

the signals. For the noise signals, the TJR varied in 3 dB steps that included -1.5 dB 

and 1.5 dB. For the speech signals, the short-term TJR varied continuously through a 

range of TJRs including 0 dB. Many of the false alarms occurred on these transitions. 

This can be seen in Fig. 5.13, which shows the true TJRs for one sentence along with 

the locations of misses and false alarms. 

In order to investigate the usefulness of the correlation method in reverberation, 

a subset of the conditions described above were repeated for the reverberant source- 

to-microphone impulse responses described in Sec. 3.2. The target angle was either 

0 or 12 degrees and the jammer angle was 38, 54, 70, or 86 degrees. For the eight 

combinations of target and jammer angles, the rates of detection and false alarm 

were computed as described above for the same three sentences and babble. For the 

reverberant conditions, the true TJRs used to assess performance were computed 

from the direct wave of target and jammer signals; reflections were not included. 

The results are shown in Fig. 5.14.10 The addition of reverberation lowers the 

detection rates overall and causes further reduction in detection rates with increasing 

bandwidth. The addition of reverberations causes no distinct trends in false alarm 

rates. 

With a two-microphone array, only one correlation measure can be computed. As 

a result, bandwidth selection is governed by two conflicting goals. On one hand, it 

is desirable to use a wide frequency band, so that the correlation measure will reflect 

as much information as possible about the broadband TJR. On the other hand, the 

use of relatively wide bandwidths is limited by their negative impact on detection 

rates. This tradeoff can be seen in Figs. 5.12 and 5.14, where increasing bandwidth 

causes the broadband and bandpass results to converge, but also causes a substantial 

reduction in detection rates. In order to balance these two conflicting requirements, 

a fractional bandwidth of 0.67 (one octave) will be used with two-microphone arrays 

10The two plots on the left contain results obtained with the anechoic room impulse responses 
for the same eight combinations of target and jammer angles, that is, the values were obtained by 
averaging a subset of the data points that were averaged to generate the values shown in Fig. 5.12. 
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Figure 5-13: Simulation results showing true TJR, bandpass TJR, and correlation 
measure with locations of misses ('x') and false alarms ('o'), for speech and babble 
received by two microphones in an anechoic environment. The target and jammer 
angles are 6t = 12° and 8j = 90°, with a fractional bandwidth of 0.67. The resulting 
detection and false alarm rates were Pj = 0.95 and Pf = 0.30 for the broadband TJR 
and Pd = 0.99 and Pf = 0.15 for the bandpass TJR. 
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Figure 5-14: Simulation results showing rates of detection and false alarms, as a func- 
tion of bandwidth, for speech and babble received by two microphones in anechoic 
and reverberant environments. The points labeled with 'x' indicate the performance 
referenced to the bandpass TJR, while the points labeled with £o' indicate the per- 
formance referenced to the broadband TJR. 

114 



desired center actual frequency 
spacing (cm) frequency (Hz) band (Hz) 

4 4313 3000-5000 
8 2156 1700-3000 
12 1438 1250-1700 
16 1078 860-1250 

Table 5.1:   Frequency bands used with intermicrophone spacings obtained from a 
16-cm, five-microphone array. 

in the remainder of this work. 

Five-microphone array 

An M-microphone array has — 2 Possible pairs. If the array elements are evenly 

spaced, then those pairs represent M — 1 distinct values of intermicrophone spacing. 

For a five-microphone array, there are 10 possible pairs with 4 distinct spacings. In 

contrast to the two-microphone case, obtaining adequate frequency coverage is not 

a problem because of the variety in microphone spacing. Instead, the issue is to 

determine the best method for combining the correlation measurements generated 

from different spacings and frequency bands. 

The simulated five-microphone array was 16 cm long, with 4 cm spacing between 

microphones. The leftmost microphone was paired with each of the other four micro- 

phones to produce four smoothed correlation measures. The desired center frequency 

for each pair was determined according to (5.30). The actual cutoff frequencies were 

selected to provide bands roughly centered at the center frequencies without overlap 

between neighboring bands. The values used are given in Table 5.1. 

The same processing used for the two-microphone array was applied to each pair 

of microphone signals to produce a smoothed correlation measure. Then those mea- 

sures were combined using each of the three methods (voting, averaging, and power- 

weighted averaging) described in Sec. 5.2.3. The results obtained using those three 

methods were compared to the true broadband TJR to generate rates of detection 

and false alarms. For the voting method, ties were resolved by selecting HI (saying 
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Figure 5-15: Simulation results showing rates of detection and false alarms for speech 
and babble received by five microphones in an anechoic environment. Results are 
shown for voting, averaging, and power-weighted-averaging methods described in the 
text, labeled vote, avg, and pavg, respectively. 

TJR > 0 dB), resulting in lower rates of both detections and false alarms. 

Figure 5.15 shows the results for the 5-microphone array in an anechoic environ- 

ment. The values are averages of 76 pairs of target/jammer angles and three sen- 

tences. Comparing the three methods of combining correlation measures, the voting 

and power-weighted-averaging methods are comparable, while the averaging method 

has a relatively high rate of false alarms. 

Comparing Fig. 5.15 to Fig. 5.12 reveals that in general, using four bands obtained 

from five microphones outperforms the one band obtained from two microphones. 

However, that improvement is modest compared to the more than four-fold increase 
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in computational requirements. Future investigations could quantify the incremental 

benefit obtained from each additional pair of microphones used to compute correlation 

measures. This would allow the system designer to select the number of microphone 

pairs and frequency bands needed for a particular application, trading relatively small 

reductions in performance for large reductions in computational complexity. For 

example, it is possible that combining correlation measures from two microphone pairs 

with appropriate spacing could provide performance comparable to that obtained with 

four microphone pairs shown in Fig. 5.15, at half the computational complexity. 

Figure 5.16 shows results in reverberation for the same eight pairs of target and 

jammer angles considered for the two-microphone array. The performance of the five- 

microphone array in reverberation is consistent with the trends previously observed. 

The presence of reverberation reduces the detection rate, with no clear trends in the 

false alarm rate. Again, the voting and power-weighted-averaging methods are com- 

parable, while the averaging method has a higher rate of false alarms. Although there 

appears to be a slight advantage to power-weighted averaging, it requires substan- 

tially more computation than the voting method. Therefore, the remainder of this 

work will use the voting method for combining multiple correlation measures. 

5.4    Discussion 

The purpose of this chapter is to investigate using quantities derived from the corre- 

lations between pairs of microphones as decision variables in a hypothesis test con- 

cerning the range of TJR. The proposed method was analyzed for narrowband signals 

with and without reverberation, and then implemented and evaluated in simulations 

with both noise and speech signals. Despite many violations of the assumptions used 

in the original analysis, the simulations show that the narrowband analysis provides 

useful insight to the more complicated case of broadband speech signals. 

The analysis with narrowband signals revealed that the binary hypothesis test 

produces the best results when the relationship between microphone spacing and 

frequency is governed by kd = ir.   Furthermore, the uncertainties introduced by 
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Figure 5-16: Simulation results showing rates of detection and false alarms for speech 
and babble received by five microphones in anechoic and reverberant environments. 
Results are shown for voting, averaging, and power-weighted-averaging methods de- 
scribed in the text, labeled vote, avg, and pavg, respectively. 
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varying levels of reverberation and the relative costs of the two types of errors indicates 

that a reasonable choice for the correlation threshold is po = 0. 

The simulations considered both two- and five-microphone arrays. For a two- 

microphone array, only one correlation measure can be computed. In this case, the 

conflicting demands of high detection rate and good frequency coverage are balanced 

by selecting an intermediate value such as 0.67 for the fractional bandwidth. For 

a five-microphone array, the multiple correlation measures from different frequency 

bands are best combined by using the voting method, so as to balance performance 

considerations with computational demand. 

The approach proposed and evaluated in this chapter was based entirely on the 

correlation coefficient between microphone signals, that is, on the correlation with 

zero time lag. This was motivated by the need to develop a method with relatively 

low computational complexity. However, the overall approach analyzed and evaluated 

in this chapter could easily be extended to utilize values derived from the correlation 

function at nonzero lags. 
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Chapter 6 

Effect of target reflections 

6.1    Introduction 

The LCMV beamformer assumes that the target direction is known and that the 

target and jammer signals are uncorrelated. As discussed in Sec. 2.3.2, target sig- 

nal reflections violate one of these two assumptions. If the reflected target signal is 

considered target, then the assumption of known target direction is violated. On the 

other hand, if the reflected target is considered jammer, the assumption of uncorre- 

lated target and jammer is violated. In either case, the result is that the reflections of 

the target signal arriving from directions other than that of the target source provide 

the beamformer with information that may be used to cancel the target signal. 

The implications of a system that cancels reverberant target signals must be con- 

sidered from the point of view of speech intelligibility. Clearly, if a system cancels 

the direct wave of the target signal, it will have a detrimental effect on intelligibility. 

However, if the system cancels reflections of the target signal, its effect is less obvious. 

In general, early reflections contribute to intelligibility while late reflections degrade 

intelligibility, where the distinction between early and late reflections is 50-95 ms af- 

ter the direct wave (Cremer and Müller, 1982). Consequently, a system that cancels 

early target reflections would degrade intelligibility, while a system that cancels late 

target reflections would improve intelligibility. Unfortunately, within the structure of 

the generalized sidelobe canceller there is no way to distinguish between early and 
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late reflections. 

Although the ultimate goal of this work is to improve intelligibility, which requires 

consideration of early and late target reflections, the work described in this chapter 

takes a simpler approach. This chapter considers the effect of target reflections on the 

performance of a two-microphone generalized sidelobe canceller, but the results also 

apply to adaptive noise cancellers and to systems with any number of microphones. 

The performance measures are the gain in powers of the direct and reflected target 

signals. 

In order to determine the effects of several parameters on system performance, 

simple source-to-microphone impulse responses are created to account for a small 

number of reflections. In addition, system performance is examined for the simulated 

room impulse responses described in Sec. 3.2. 

6.2    Background 

Figure 6.1 shows a block diagram of the system considered in this chapter. It is based 

on a two-microphone version of the generalized sidelobe canceller shown in Fig. 2.4. 

Unlike that system, it does not include misadjustment or transient behavior due to 

the LMS algorithm. This is accomplished by replacing the adaptive filter weights 

by their optimal values. Furthermore, the environment differs in that no jammer 

source is present, because the target-only condition provides a worst-case assessment 

of target cancellation. 

The target source, ta(n), is filtered by two source-to-microphone room impulse 

responses, hto(n) and ha(n). The two microphone signals are added and subtracted 

to produce the primary and reference signals, respectively. The primary signal is 

*(») = ^«W * (Mn) + M»))) t6-1) 
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Figure 6-1: Block diagram of target-only system with optimal weights. The input 
is the target source, which is filtered by two source-to-microphone room impulse 
responses, hto(n) and hti(n). The two microphone signals are added and subtracted to 
produce the primary and reference signals, z(n) and x(n), respectively. The reference 
signal is filtered by the optimal weights, w*, determined according to (6.3) in the 
text. The result is subtracted from the primary signal, delayed by D samples, to 
produce the system output. 

and the reference signal is 

x(n) = ö(**(n) * (M71) _ hn(n))). (6.2) 

The reference signal is filtered by the optimal weights, which are determined according 

to (4.11), 

w* = R^p, (6.3) 

where R is the autocorrelation matrix of the reference signal in the tapped delay 

line of the adaptive filter and p is the cross-correlation vector between the delayed 

primary signal and the reference signal in the tapped delay line. The filtered reference 

signal is subtracted from the primary signal, delayed by D samples, to produce the 

system output. 

If the target source, tt[n) is stationary, zero-mean white noise, then the autocor- 

relation matrix, R, and the cross-correlation vector, p, can be determined from the 

impulse responses ht0(n) and hti(n), the primary delay, D, and the filter length, L, 

after Zurek et al. (1990). This can be seen as follows. The autocorrelation matrix, R, 
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is the L x L symmetric Toeplitz matrix with entries in the iih. row and jth column 

given by 

Rij=r(i-i)     x = l,...,I     j = l,...,L, (6.4) 

where r(fc) is the autocorrelation function of the reference signal, 

r(k) = E[x(n)x{n - k)]. (6.5) 

Similarly, the cross-correlation vector, p, is the L x 1 vector with the ith entry given 

by 

Pi=p{i-1-D)     i = l,...,L, (6.6) 

where p(k) is the cross-correlation function between the primary and reference signals, 

p(k) = E[z(n)x{n - k)}. (6.7) 

Substituting (6.1) and (6.2) into (6.5) and (6.7) and rearranging produces 

r(k)   =   -E[(t.(n) * (ht0{n) - htl(n)))(t,(n) * (ht0(n - k) - htl(n - A)))] 

= Jrt(fc) * (M*) - M*)) * (M-fc) - M-*)) (6-8) 

and 

p(k)   =   -E[(ts(n) * (fc„(n) + htl{n))){t,{n) * (ht0(n - k) - htl{n - *)))] 

=   Jrt(fc) * (ht0{k) + htl(k)) * (htoi-k) - M-fe)) (6-9) 

where rt(A;) is the autocorrelation function of the target source, that is, 

rt(k) = E[t,(n)t,(n - k)}. (6.10) 

If ts(n) is zero-mean white noise, then rt(k) = S(k) (the unit impulse), and the 
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functions r(k) and p(k) become 

and 

r(k) = \(ht0(k) - htl(k)) * (ht0(-k) - htl(-k)) (6.11) 

p(k) = \(ht0(k) + htl{k)) * (M-*0 - hn(-k)). (6.12) 

These expressions depend only on the source-to-microphone impulse responses, so, 

if the target source is zero-mean white noise, then the optimal weights, w*, can be 

computed from ht0(n), htl(n), L, and D using (6.3), (6.4), (6.6), (6.11) and (6.12). 

Assuming the source-to-microphone impulse responses hto(n) and ht\(n) consist 

of a direct wave that is equal in the two microphones, and reflections that differ in 

the two microphones, their difference, ht0(n) - htl(n), depends only on the reflections. 

Examining (6.11) and (6.12) reveals that the autocorrelation function r(k) consists 

only of terms related to the reflections, while the cross-correlation function p(k) con- 

sists of terms related to both the direct wave and the reflections. The cross-correlation 

function p(k) can be considered the sum of two components, the terms due only to 

the reflections, and those due to the direct wave and reflections.1 Since the cross- 

correlation vector p consists only of the terms of p(i — 1 — D) for i = 1,..., L, the 

choice of D determines whether or not the terms of p(k) including information about 

the direct wave are included in the optimal weights, w*. 

In particular, examining (6.6) and (6.12) reveals that if no reflections occur within 

D samples of the direct wave, then p, and consequently w*, depend only on the 

reflections. This has important implications for the performance of the system in 

the presence of target reflections. If D is less than the interval between the direct 

wave and the first reflection, the optimal weights will be the same as if no direct 

wave were present, and no cancellation of the direct wave can occur, despite the 

fact that the target reflections violate one of the two basic assumptions of LCMV 

beamformers. This is an extension of the observation that target cancellation due to 

target reflections can be avoided by setting D = 0 (Hoffman et al., 1994). 

1Examples of this decomposition are given in Sec. 6.5.2. 
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The analysis leading to the important result in the previous paragraph was based 

on two assumptions, that the direct wave is equal in the two microphones and that 

the source is zero-mean white noise. Violation of the first assumption subjects the 

direct wave to cancellation due to misalignment, which is a problem regardless of the 

level of reverberation and supercedes the problem of cancellation due to reflections. 

(Making adaptive arrays robust to misalignment was a major motivation behind the 

modifications proposed in Chs. 4 and 5.) Violation of the second assumption com- 

plicates the analysis because the optimal weights, w*, cannot be determined solely 

from the source-to-microphone impulse responses and the parameters L and D. In 

this case, the optimal weights will also depend on the autocorrelation of the source 

signal, as indicated in (6.8) and (6.9). When the target signal is voiced speech (which 

is correlated for short lags), the above result must be modified to state that no sig- 

nificant cancellation of the direct wave can occur when D is less than the sum of 

two quantities — the interval between the direct wave and the first reflection and the 

maximum lag for which the source exhibits substantial correlation. 

6.3    Methods 

In order to study the effect of target signal reflections, several source-to-microphone 

room impulse responses are used. Two simple types of impulse responses are a direct 

wave with a single reflection and a direct wave with two reflections. In both cases, 

the direct wave is aligned in time and of equal amplitude in the two microphones, 

simulating a perfectly aligned array. 

The single-reflect ion impulse responses consist of a direct wave of unit amplitude 

followed by a single reflection arriving at the microphones with a relative delay of 

one sample. The purpose of the relative delay is to make the reflection appear to 

arrive from a direction other than straight ahead.2 This is similar to the simple case 

analyzed by Lu and Clarkson (1993) for an adaptive noise canceller.   This case is 

2 A relative delay of one sample makes the reflection appear to arrive from the azimuthal angle 
8 = arcsin(£^1L), where c is the speed of sound, T, is the sampling period, and d is the spacing 
between microphones. 
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described by the equations 

ht0(n) = S(n) + aS(n - di - 1) (6.13) 

M«) = S(n) + aS(n - <*i). (6.14) 

An example of single-reflection impulse responses is illustrated in Fig. 6.2(a) for d\ = 

50 and a = 0.2. 

The two-reflection impulse responses consist of a direct wave of unit amplitude 

followed by two reflections of the same amplitude but with different relative delays. 

This case is described by the equations 

M») = 8{n) + aS(n - dx - 1) + a6{n -d2 + 2) (6.15) 

Mn) = *(») + «*(» - <*i) + aS(n ~ <*2)- (6-16) 

An example of two-reflection impulse responses is illustrated in Fig. 6.2(b) for dx = 50, 

d2 = 70 and a = 0.2. 

In addition to the simple impulse response described above, two additional pairs 

of impulse responses were studied. These impulse responses represent moderately 

reverberant and strongly reverberant rooms and are shown in Figs. 6.2(c) and 6.2(d). 

They were generated by the room simulation as described in Sec. 3.2. 

For each pair of source-to-microphone impulse responses, the source-to-system- 

output impulse response was computed for the system shown in Fig. 6.1. The filter 

length was L = 1000 and the primary delay varied from D = 0 to D = 990 for each 

condition. The target source was assumed to be stationary zero-mean white noise. R 

and p were determined from (6.4), (6.6), (6.11) and (6.12), and the optimal weights 

were computed according to (6.3) using the Levinson algorithm (Golub and van Loan, 

1983). 

To assess the performance of the system for each condition, the source-to-system- 

output impulse response was compared to the source-to-primary impulse response. 

For each of these impulse responses the powers of the direct and reflected portions of 
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Figure 6-2: Examples of source-to-microphone impulse responses described in the 
text, (a) Single-reflection impulse responses described by (6.13) and (6.14), (b) 
two-reflection impulse responses described by (6.15) and (6.16), (c) simulated room 
impulse responses described in Sec. 3.2 with wall absorption of 0.6 (moderate rever- 
beration), and (d) simulated room impulse responses described in Sec. 3.2 with wall 
absorption of 0.2 (strong reverberation). 
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the impulse response were calculated. The direct power was based on the power in 

the five samples of the impulse response surrounding the known index of the direct 

wave, while the reflected power was calculated based on the power in the remainder of 

the impulse response. The gain in direct wave power due to the system is computed 

from the ratio of direct wave power in the system output to direct wave power in the 

primary channel. This quantity is 0 dB when no direct wave cancellation occurs and 

negative when cancellation of the direct wave occurs. The gain in reflected power 

due to the system is calculated in a similar fashion, and negative values of the gain 

indicate attenuation of the target reflections.3 These measures, based on the powers in 

segments of the impulse responses, differ from AT(Td) and AT(Tr) defined in Sec. 3.3 

and, unlike those measures, provide an accurate indication of the effect of the system 

even when the output includes cancellation of direct target based on target reflections. 

6.4    Results 

Figures 6.3 and 6.4 show the gains in direct and reflected powers for the four pairs of 

impulse responses. The solid lines in the left half of Fig. 6.3 show the gains in direct 

and reflected target powers, as a function of primary delay D, for the case of a single 

reflection described by (6.13) and (6.14) with a = 0.2 and 4 = 50. As expected from 

the analysis in Sec. 6.2, when D < dx the direct wave is preserved and the system 

provides substantial cancellation of the reflection. When D > di, the system cancels 

both the direct wave and the reflection. The cancellation of the reflection is reduced 

because the system minimizes the total output power, and since the direct wave 

contributes more to the total output power, that quantity is minimized by providing 

more cancellation of the direct wave and less cancellation of the reflection. Except 

for the large change that occurs at D = dx, the system performance is independent 

of D. 

The solid lines in the right half of Fig. 6.3 show the gains in direct and reflected 

3Note that these gains are based on a different reference than in the remainder of this work, 
where the gain is relative to a single microphone signal. Here the gain is relative to the primary 
signal, so that it does not include attenuation of reflections due to averaging the microphone signals. 
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target powers, as a function of primary delay D, for the case of two reflections de- 

scribed by (6.15) and (6.16) with a = 0.2, dx = 50 and d2 = 70. As expected, when 

D < d\ the direct wave is preserved, and when D > di, both the direct wave and 

the reflections are cancelled to some degree. Unlike the case of a single reflection, the 

degree of cancellation varies with D, in addition to the large change that occurs at 

D — d\. The cause of these variations will be investigated in Sec. 6.5.2. 

Figure 6.4 shows the gain in direct and reflected target powers, as a function of 

primary delay D, for the simulated room impulse responses shown in Figs. 6.2(c) and 

6.2(d). The general trends in these results are similar to those seen in Fig. 6.3 with 

the simple room impulse responses. For both pairs of impulse responses, the first 

reflection occurs 46 samples after the direct wave, but it is aligned in time at the two 

microphones. The second reflection occurs 66 samples after the direct wave, and is 

not aligned at the two microphones. As expected, when D < 66 the direct wave is 

preserved and only the reflections are cancelled. When D > 66 both the direct wave 

and the reflections are cancelled. 

The dotted lines in Figs. 6.3 and 6.4 show the effect of the system on the reflections 

in the absence of the direct wave. Because the reflections are signals arriving at the 

array from off-axis directions, the ability of the system to cancel target reflections is 

also indicative of its ability to cancel off-axis jammers. The dotted lines in Figs. 6.3 

and 6.4 show that maximum cancellation of off-axis sources is obtained for a broad 

range of values of D > 0. Overall, the results shown in Figs. 6.3 and 6.4 show that 

there is a clear advantage to using values of D substantially greater than zero, but 

less than the delay to the first reflection. 

Figure 6.5 shows the source-to-delayed-primary and source-to-system-output im- 

pulse responses for the simulated room with strong reverberation (Fig. 6.2(d)), for 

D = 50 and for D = 500. Clearly, for D = 50 the direct wave is preserved, and some 

reflections are noticeably attenuated. For D = 500, both the direct wave and the 

reflections are attenuated. 

In order to investigate the variations in performance that occur with changes in 

the direct-to-reverberant ratio, modified source-to-microphone impulse responses were 
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for impulse responses with a single-reflection (left) and with two reflections (right). 
Solid lines indicate results when both the direct and reflected components are present; 
dotted lines indicate results for reflected components alone. 
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developed based on the simulated impulse responses of the moderately reverberant 

room (Fig. 6.2(c)). Those impulse responses were separated into components consist- 

ing of either the direct wave or the reflections, and the direct-wave component was 

scaled before recombining with the reflections to produce impulse responses with the 

same structure, but different direct-to-reverberant ratios. Figure 6.6 shows the gain 

in direct and reflected target powers for these modified pairs of impulse responses. 

Because the optimal weights are selected to minimize the total output power, the 

results show relatively more cancellation of the stronger component, that is, more 

cancellation of reflections at the lower direct-to-reverberant ratio (dotted lines) and 

more cancellation of the direct wave at a high direct-to-reverberant ratio (solid lines). 

At the high direct-to-reverberant ratio, for some values of D, the system's attempt 

to minimize the stronger direct component results in amplification of the reflections 

(gain greater than 0 dB). 

In addition to the results shown here, the gain in direct and reflected powers was 

computed for other impulse responses and for the addition of uncorrelated sensor 

noise in the two microphone signals. The general trends observed under a variety of 

conditions were similar to the results shown above. 

6.5     Discussion 

6.5.1     Summary 

The results of the previous section suggest that a simple solution to the problem 

presented by reverberant target is to set the primary delay to zero, as suggested by 

Hoffman et al. (1994). However, the results also show that, in general, the cancellation 

of target reflections (and therefore cancellation of jammer signals) improves with 

increasing D. This improvement is because nonzero primary delays permit non- 

causal responses on the part of the adaptive filter, which was the initial motivation 

for including a primary channel delay (Widrow and Stearns, 1985). As a result, it is 

advisable to use a primary delay that is nonzero, but relatively small. 
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Ideally, the primary delay should always be less than the number of samples 

between the direct wave and the first reflection. However, since these systems must 

operate in a variety of acoustic environments, it is likely that, if D is nonzero, on 

some occasions early reflections will arrive at the array within D samples of the 

direct wave. Fortunately, when there are multiple reflections, the system is robust to 

some reflections within D samples of the direct wave. This robustness exists provided 

that there are additional reflections that arrive more that D samples within the 

direct wave. For example, there is relatively little cancellation of the direct wave in 

Fig. 6.4 for 66 < D < 120. Those figures illustrate the worst case scenario for target 

cancellation, because no jammer signal is present and the filter weights are optimum. 

Since the simulated room impulse responses have a 10 kHz sampling rate, reflec- 

tions arriving at the microphones 50 - 66 samples after the direct wave corresponds 

to delays of 5.0 - 6.6 ms, or distances of roughly 2 meters at the speed of sound. 

Although earlier reflections can be expected in real rooms with furnishings, they will 

be few relative to the total reflections, and are not expected to change the general 

trends seen in Fig. 6.4. 

Kompis and Dillier (1991) empirically optimized the delay, D, where the optimal 

parameter value was defined as that which provided the largest gain in TJR. They 

varied D for a single target/jammer configuration with various filter lengths in several 

reverberant rooms. They conclude that for L < 128, the value of the D has no great 

influence on performance, while for L > 512 the 'optimal5 delay is 25-50% of the 

filter length. For the rooms that they studied, the time between the direct wave and 

first reflection is not known. However, their results are consistent with the current 

analysis. For relatively short filters, the delay does not matter because no reflections 

arrive within L samples of the direct wave. For relatively long filters, their suggested 

range of j < D < \ presumably results from the tradeoff between two factors that 

improve performance: relatively short D minimizes the number of reflections arriving 

within D samples of the direct wave and D = ^ centers the non-causal impulse 

response. 

Finally, to characterize the robustness of the system to some reflections within D 
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samples of the direct wave, it might be useful to quantify the relationship between 

the degree of direct wave cancellation and some measure of the reflections occurring 

within D samples of the direct wave and more than D samples after the direct wave. 

However, the following analysis shows that for room impulse responses with more 

than one reflection, other factors influence the relationship between D and system 

performance, and the performance cannot be explained solely on the basis of the 

reflections arriving within D samples of the direct wave. 

6.5.2    Analysis 

The lack of direct wave cancellation when D is less than the time between the direct 

wave and the first reflection was predicted in Sec. 6.2 and demonstrated in Sec. 6.4. 

Here, that result is analyzed for the cases of one and two reflections described in 

Sec. 6.3. 

First, it will be useful to define some additional quantities. In Sec. 6.2, it was 

shown that if the direct wave is perfectly aligned in the two channels, the auto- 

correlation function r(k), and consequently R, consist only of terms related to the 

reflections, while the cross-correlation function p(k) and vector p consists of terms 

related to both the direct wave and the reflections. It will be useful to decompose 

the function p(k) into a component that depends only on the reflections (pl(k)) and 

a component that depends on both the direct wave and the reflections (p2(k)) by 

defining 

p(k)=pl(k)+p2(k). (6.17) 

Then 

p = pl + p2, (6.18) 

where pi and p2 are L x 1 dimensional vectors based on pl(k) and p2(k) as in (6.6). 

Using (6.3), the optimal weights also consist of two components, that is, 

w * = R"ap = R-'pl + R_1p2 = w? + w*2, (6.19) 
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where the weight vector wj is only based on the reflections. In fact, the vector wj 

is equivalent to the weights that would result if the direct wave were absent and the 

source-to-microphone impulse responses consisted solely of off-axis reflections. 

In addition to the fact that R depends only on the reflections, the matrix R 

determined according to (6.4) and (6.11) does not depend on the primary delay, D. 

On the other hand, the cross-correlation vector, p, determined according to (6.6) and 

(6.12) does depends on the direct wave and D. 

For the case of a single reflection, substituting (6.13) and (6.14) into (6.12) gives 

p(Jfe)   =   h28{k) + a6(k - h - 1) + a6{k - di)) 

*(aS(k + di + 1) - aS(k + dt)) 

=   ^(2S(k + d1 + l)-2S(k + d1) + aS(k + l)-aS(k-l)),      (6.20) 

which can be separated into the two terms 

2 

pl(k) = j(6(k + 1) - 6{k - 1)) (6.21) 

and 

P2(k) = ^{8{k + <k + 1) - 6{k + dx)). (6.22) 

For any value of D in the range 0 < D < L — 1, pi has two nonzero entries that 

occur in positions D and D + 2. If 0 < D < d1} then p2 = 0 and w* = w^ (the 

optimal weights for cancelling reflections alone). If D > d\, then p2 is nonzero, and 

the resulting weights depend on (and cancel) both the direct wave and the reflections. 

Therefore, for the case of a single reflection, the dependence of performance on 

the primary delay D observed in the left half of Fig. 6.3 is completely explained by 

whether or not a particular value of D results in a cross-correlation vector p that 

includes nonzero elements of p2(k), which contain information about the correlation 

between the direct wave and the reflections. However, this result does not generalize 

to the case of two or more reflections, as shown below. 

For the case of two reflections, separating the direct wave from the reflections and 
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substituting (6.15) and (6.16) into (6.12) gives 

2 

pl(fc)   =   ^-(S(k + d2 - dx) - S{k + d2 - dx - 1) (6.23) 

+S(k + d2-d1-2) + S(k + d2-d1-Z) 

-S(n + 2) + 8{n + 1) - S(n - 1) + 8{n - 2) 

+S(k - d2 + di + 3) - 6(k - d2 + <*i + 2) 

+S(fc - <i2 + dx + 1) - 6(k -d2 + dx)) 

and 

a. 
P2(k) = -{-S(k + <Z2) + 6(k + d2-2) + S{k + dx + 1) - £(fc + dx)) (6.24) 

The twelve terms in (6.23) are clustered into three groups of four impulses. For 

any value of D in the range 1 < D < L - d2 + dx - 1, pi has at least eight nonzero 

entries, corresponding to the last eight terms in (6.23). If D > d2 — dx, then all twelve 

terms of (6.23) occur as nonzero entries in pi. Therefore, it is expected that the 

system will show a change in the performance near D = d2 — dx.
4 

The four terms in (6.24) comprise two groups of two impulses. If 0 < D < di, 

then p2 = 0 and w* = wj (the optimal weights for cancelling reflections alone). If 

di < D < d2, then p2 contains two nonzero terms, and the resulting weights depend 

on (and cancel) both the direct wave and the reflections. If D > d2 + 1, then p2 

contains four nonzero terms, and the resulting weights will cancel the direct wave 

more effectively than in the previous case. 

For the case of dt = 50 and d2 = 70, the above analysis predicts an improvement 

in cancellation of reflections near D = d2 - dx = 20, no direct cancellation for D < 

50, some direct wave cancellation when 50 < D < 70, and increased direct wave 

cancellation when D > 70. The performance observed in the right half of Fig. 6.3 is 

4When d2 — d1-Z < D <d2-di,pl has between nine and eleven nonzero entries. For simplicity, 
when impulsive terms of cross-correlation functions occur in clusters, the details of such transitions 
will be ignored. Hence the change in performance is expected near, but not exactly at, D = d2 — di. 
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in accordance with these predictions. 

However, the right half of Fig. 6.3 shows that there are additional changes in 

performance of magnitude similar to those predicted by the analysis, occurring at 

D = 40 and at intervals of 20 starting with D = 90. This dependence of performance 

on D cannot be attributed to the inclusion of additional terms in pi and p2. Rather, 

it is due to the fact that varying D affects the position of the nonzero entries in pi 

and p2, which determines which columns of the matrix R_1 are used to produce the 

filter weights. The structure of R_1 depends only on the reflections, and the filter 

length L, not on the direct wave or the primary delay D. 

Therefore, this section concludes with the observation that, although the presence 

or absence of direct target cancellation can be predicted based on the presence or 

absence of reflections within D samples of the direct wave, it is not possible to predict 

other general variations in performance with D when multiple reflections exist. 

6.6     Conclusion 

The effect of reflections of the desired target source on the performance of a two- 

microphone generalized sidelobe canceller was studied. Simple source-to-microphone 

impulse responses were created to account for a small number of reflections. In addi- 

tion, performance was studied using the simulated room impulse responses described 

in Sec. 3.2. 

The results show that the primary channel delay, D, has a large impact on the 

system's ability to cancel the direct target based on target reflections. Direct target 

cancellation is eliminated entirely when the primary delay is shorter than the interval 

between the arrival of the direct wave and the arrival of the first reflection at the 

microphone array. Direct target cancellation due to target reflections is most pro- 

nounced when there are a small number of reflections and those reflections arrive at 

the array within the time window determined by the primary delay. Direct target 

cancellation is less severe when there are a large number of reflections and only a 

small fraction of the reflections arrive within the time window determined by the 
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primary delay, and other benefits derived from using nonzero values of the primary 

delay suggest that it is advisable to use a primary delay that is nonzero, but relatively 

small. 

An attempt was made to quantify the robustness of the system when a small 

fraction of the total number of reflections occur within D samples of the direct wave. 

However, when more than one reflection exists, the relationship between system per- 

formance and primary delay depends on the structure of the inverse of the autocor- 

relation matrix, and the system performance cannot be explained solely on the basis 

of the reflections arriving within D samples of the direct wave. 
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Chapter 7 

Simulation Results 

7.1 Introduction 

The purpose of this chapter is to evaluate adaptive-array hearing aids in a variety of 

acoustic environments. The systems considered are based on the generalized sidelobe 

canceller proposed by Griffiths and Jim, described in Sec. 2.1. These systems are 

implemented in computer simulations and evaluated using Gi, the physical measure 

of intelligibility-weighted gain described in Sec. 3.3. 

The results of these simulations will provide answers to the following questions: 

1. Are the modifications suggested in Chs. 4 and 5 effective against the problems 

of misadjustment and misalignment when integrated into a complete system? 

2. What level of performance can be expected with practical systems in a variety 

of acoustic environments? 

3. How is performance in various environments affected by design parameters such 

as filter length and number of microphones? 

7.2 Processing 

The first step required for the computer simulations is to generate signals received 

by the microphone arrays for processing by the systems under consideration.   This 
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was accomplished by convolving the source materials described in Sec. 3.1 (IEEE 

sentences and SPIN babble sampled at 10 kHz) with the source-to-microphone impulse 

responses described in Sec. 3.2. To simulate perfectly aligned arrays, the target source 

was located at 0° and the jammer source was at 45° azimuth.1 To simulate misaligned 

arrays, the target source was located at 10° and the jammer source was at 55° azimuth. 

Two configurations were simulated, a 7-cm array of two omnidirectional microphones 

and a 16-cm array of five omnidirectional microphones, as described in Sec. 3.2. Three 

levels of wall absorption were used to generate one anechoic and two reverberant 

conditions. The two reverberant conditions had direct-to-reverberant ratios of +6 dB 

and —2 dB, and will be referred to as moderate and strong reverberation, respectively. 

The relative level of the target and jammer sources was varied to produce three target- 

to-jammer ratios of —20, 0, and +20 dB. 

These signals were processed by two- and five-microphone adaptive systems using 

yoked processors (Sec. 3.3) to determine the effect of the system on each of three signal 

components: the jammer, the direct target, and the target reflections. The algorithms 

evaluated included four combinations of processing options based on modifications 

suggested in Chs. 4 and 5, so that each condition was tested with the sum method 

of normalizing the step-size parameter, with the correlation method of controlling 

adaptation, with both of these modifications, and with neither modification. Based 

on the results of Ch. 6, the primary delay was set to D = 50. Two adaptive filter 

lengths were considered, L = 100 and L = 1000, corresponding to 10 ms and 100 ms 

at the 10 kHz sampling rate. 

Figure 7.1 shows a block diagram of the complete system with both modifica- 

tions. The sum method, described and analyzed in Ch. 4, consists of normalizing the 

adaptive weights according to (4.17) and (4.60). For comparison, the processor was 

also tested using the traditional method (4.19). For both methods, the dimensionless 

step-size parameter was a = 0.25. The signal powers required by (4.19) and (4.60) 

were obtained by squaring the reference input and system output and then processing 

1Previous work has shown that the performance obtained with a jammer located at 45° is repre- 
sentative of performance obtained with a single jammer at other angles (Greenberg, 1989). 
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with first-order recursive lowpass filters. The time constant of the lowpass filter used 

on the reference input equaled the length of the adaptive filter (10 ms or 100 ms) 

in order to account for the power of the signal in the tapped delay line. The time 

constant of the lowpass filter used on the system output was 10 ms, which was found 

to be a good value for tracking power fluctuations in speech. 

The correlation method of controlling adaptation was implemented as described 

in Sec. 5.3. For the two-microphone array, the bandpass filter cutoff frequencies were 

1643 Hz and 3286 Hz, one octave about the center frequency, 2464 Hz, determined 

by (5.30). For the five-microphone array, the bandpass filter cutoff frequencies were 

those given in Table 5.1. All of the bandpass filters were 10th-order Butterworths. 

The hard limiter was included in computing the instantaneous correlation, and the 

instantaneous values were smoothed by a first-order recursive lowpass filter with 10-ms 

time constant. The threshold correlation value was p0 = 0. For the five-microphone 

system, the voting method was used. 

For each combination of acoustic condition and processing option, the system 

adapted on the same sequence of 40 IEEE sentences paired with 40 matching-length 

segments of SPIN babble. The lengths of the sentences varied from 22656 to 38912 

samples, with a mean of 29242 samples. When the source signal levels were adjusted to 

produce a TJR of 0 dB over all 40 sentences, the TJRs for individual sentences ranged 

from -2.5 to 1.9 dB. For processing, the sentences and babble segments were concate- 

nated to produce a single set of source signals of 117 sec duration. For evaluation, 

the performance measures were calculated individually for each sentence-plus-babble 

segment. The intelligibility-weighted gain, Gj, was computed based on the system 

output and the input signal received at one microphone; the two-element array used 

the leftmost microphone to obtain the input levels and the five-element array used 

the center microphone. 

For each condition, the steady-state performance was determined by averaging the 

performance measures (in dB) obtained from the last five sentences (36-40).2 Com- 

2These five sentences had lengths of 26880, 27648, 25856, 24448 and 31616 samples and TJRs of 
1.4, 1.9, -0.6, -0.5, and 0.9 dB when scaled for TJR=0 dB over all 40 sentences. 
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Figure 7-1: Block diagram of the generalized sidelobe canceller modified by the cor- 
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paring these performance measures to values obtained by averaging the preceeding 

five sentences (31-35) showed a difference of less than 2 dB for all conditions. There- 

fore, the results presented below are not sensitive to minor variations in the speech 

materials. 

For most of the conditions considered, the system converged rapidly, and the per- 

formance was roughly constant over all 40 sentences. However, a few of the conditions 

considered had much longer convergence times, and for one condition (five-microphone 

array with 1000-point filters), the system had not reached steady-state even after 40 

sentences. The steady-state performance measures based on the last five sentences 

are presented in the next section, while the transient performance will be discussed 

in Sec. 7.4. 

7.3     Steady-state performance 

7.3.1    Effect of modifications 

Figures 7.2 and 7.3 show the steady-state performance with and without the modifi- 

cations. Each plot in these figures shows the intelligibility-weighted gain, Gi, versus 

the direct-to-reverberant ratio for all four processing options (sum method of nor- 

malizing the step-size parameter, correlation method of controlling adaptation, both 

modifications, and neither modification). Figure 7.2 shows the results for 0 dB input 

TJR, and Fig. 7.3 shows the results for +20 dB input TJR. Results are not shown for 

input TJR of —20 dB because the modifications have little or no effect at low TJR. 

As explained in Sec. 3.3, positive Gj values indicate improved intelligibility (ampli- 

fication of the target or attenuation of the jammer), while negative Gi values indicate 

degraded intelligibility (attenuation of the target or amplification of the jammer). Fig- 

ure 7.2 shows that for 0 dB input TJR, the unmodified algorithm provides moderate 

gains for all conditions. Performance improves with the addition of either modifi- 

cation, and adding both modifications provides the best performance. The largest 

improvements occur in the anechoic environment, but the modifications also provide 
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ing steady-state performance with and without the two modifications. Anechoic re- 
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1000-point adaptive filters. 
146 



aligned 

20 
—i 
ö    0 

-20 

TJR in = 20 dB 

M=2, L==100 

20 10 

20 
—I 
a   o 

-20 

M=2, L=1000 

misaligned 

20 

0 

-20 

-.:$-■ 

r 
20 10 

— both modifications 
- - correlation method 
■•-• sum method 
■ ■ • no modifications 

20 10 

20 

o  

^^ "*"^*"^^S"5». 

M= =5, L= =100 
20 

0 

-?0 

I 
0 

-?0 

^rr::::T3^^i 
20 10 20 10 

20 
—I 
o   0 

-20 

M=5, L=1000 

20 10 
D/R (dB) 

10 
D/R (dB) 

Figure 7-3: Intelligibility-weighted gain, Gi, versus direct-to-reverberant ratio show- 
ing steady-state performance with and without the two modifications. Anechoic re- 
sults are shown at a direct-to-reverberant ratio of +20 dB. The input TJR was +20 
dB. The arrays were either perfectly aligned to the straight-ahead target or mis- 
aligned by 10°. The systems tested were two- and five-microphone arrays with 100- 
and 1000-point adaptive filters. 
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substantial improvements in moderate reverberation. 

Figure 7.3 demonstrates the need for the modifications when the input TJR is 

high. In this case, the unmodified algorithm performs poorly, with values of Gj as 

low as —20 dB. Again, the best performance is obtained with both modifications, the 

largest improvements occur in the anechoic environment, and the modifications also 

provide substantial improvements in moderate reverberation. Although performance 

generally improves with either modification, for the misaligned conditions the corre- 

lation method alone provides much larger benefits than the sum method alone. While 

the sum method alone effectively reduces misadjustment when the array is aligned, it 

permits substantial target cancellation when the array is misaligned. The interactive 

effects of the two modifications on misadjustment and target cancellation have been 

explained previously (Greenberg and Zurek, 1992). 

From the results shown in Figs. 7.2 and 7.3, it is clear that the system always 

performs better with both modifications than it does with either modification alone or 

with no modifications. This was shown previously for two microphones with L = 100 

in an anechoic environment (Greenberg and Zurek, 1992). The current results indicate 

that the modifications are effective in anechoic and reverberant environments, for 

arbitrary filter lengths, and for five as well as two microphones. 

The next section summarizes steady-state performance results for the algorithm 

utilizing both modifications. The transient performance of all four processing options 

will be considered in Sec. 7.4. 

7.3.2    Performance with both modifications 

This section considers in more detail the performance of the algorithm with both 

modifications; it examines the effect of design parameters (adaptive filter length, L, 

and number of microphones, M), as well as variations in the acoustic environment 

(degree of reverberation, TJR, array alignment). In presenting these results, it will 

be useful first to consider the intelligibility-weighted gain, Gi, and then to examine 

the components that compose Gj. 
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Intelligibility-weighted gain 

Figure 7.4 shows the steady-state performance for systems using both modifications. 

As before, the steady-state performance was determined from the average value of 

Gj for the last five sentences. The values shown for TJR=0 dB and TJR=20 dB are 

repeated from Figs. 7.2 and 7.3. 

Each plot in Fig. 7.4 shows Gj versus the direct-to-reverberant ratio for three input 

TJRs. Comparing the three curves in each plot shows that the best performance is 

obtained when the input TJR is low, but very good performance is obtained for 

all input TJRs. For all values of input TJR, Gi is positive, indicating that the 

systems always provide some benefit. Furthermore, comparing the right and left 

sides of Fig. 7.4 reveals that the systems are robust to misalignment. Comparison 

with Figs. 7.2 and 7.3 indicates that the combination of the two modifications are 

responsible for this robustness to misalignment and high input TJR. 

The results in Fig. 7.4 show that the best performance is obtained in anechoic 

environments and performance decreases with increasing reverberation. In moderate 

reverberation, the longer filters provide substantial benefits over the shorter filters. 

In strong reverberation, Gj approaches a small, positive value regardless of filter 

length. These results are consistent with previously reported trends of performance 

for a two-microphone system in reverberation for the limited case of no target signal 

(Greenberg and Zurek, 1992). 

For the conditions studied here, the five-microphone array shows a slight perfor- 

mance advantage over the two-microphone array. However, these two arrays perform 

comparably because there is only one directional jammer. The two-microphone array 

can form one independent broadband null, while the five-microphone array can cre- 

ate four independent broadband nulls. Therefore, the five-microphone array will have 

a substantial advantage over the two-microphone array in the presence of multiple 

directional jammers. The number of microphones required in a practical system will 

be discussed in Sec. 8.2. 

The points marked by 'x' in Fig. 7.4 indicate the performance of a fixed beam- 

former with uniform weights, that is, the system shown in Fig. 7.1 with the adap- 
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Figure 7-4: Intelligibility-weighted gain, Gi, versus direct-to-reverberant ratio show- 
ing steady-state performance with both modifications for three input TJRs. Anechoic 
results are shown at a direct-to-reverberant ratio of +20 dB. The arrays were either 
perfectly aligned to the straight-ahead target or misaligned by 10°. The systems tested 
were two- and five-microphone arrays with 100- and 1000-point adaptive filters. Also 
shown are results of the underlying fixed system, described in the text. 
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tive filter disconnected. In extreme reverberation, the performance of the system 

approaches that of the underlying fixed system, that is, the output is simply the pri- 

mary signal because the adaptive filter weights approach zero. This was demonstrated 

previously for a two-microphone system with no target signal (Greenberg and Zurek, 

1992). The most reverberant condition simulated here (—2 dB direct-to-reverberant 

ratio) has sufficient directional components so that the adaptive filter weights are 

nonzero and the performance may exceed that of the underlying fixed beamformer. 

Even so, the current results demonstrate that with both modifications, this trend 

toward 'graceful failure' of the adaptive algorithm is extended to cases including both 

target and jammer signals, as expected. 

Components of intelligibility-weighted gain 

Considering the intelligibility-weighted measures that contribute to Gi, discussed in 

Sec. 3.3, provides additional understanding of the behavior of the system. Figures 

7.5-7.8 display values of AT(Td), AT(TT), AT(T), and AT(J) derived from the same 

output signals used to produce the values of Gi shown in Fig. 7.4. 

Under ideal conditions, the generalized sidelobe canceller should exactly preserve 

the direct target signal, that is AT(Td) should equal 0 dB. Under nonideal condi- 

tions, misalignment and target reflections are the two possible causes of direct target 

cancellation. In accordance with the results of Ch. 6, all of the systems evaluated 

used a relatively short primary delay of D — 50 (5 ms). As discussed in Sec. 6.4, for 

these source-to-microphone impulse responses, the first off-axis reflection arrives at 

the microphones 66 samples after the direct wave. Therefore, for aligned arrays, the 

simulation results should show no cancellation of direct target due to target reflec- 

tions. 

Figure 7.5 shows the effect of the systems on the direct target. As expected, for 

the two-microphone array, the direct target signal was completely preserved. The 

five-microphone system showed slight cancellation of the direct target (—1.2 dB < 

AT(Td) < 0 dB) due to level and phase differences at pairs of microphones placed 

asymmetrically with respect to the direction of propagation. This can be considered 
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a form of misalignment due to the fact that the room simulation produces spherical 

radiation, so the target signal at the array was not an ideal plane wave. 

For misaligned arrays, target cancellation is possible because the system is con- 

strained to preserve sources arriving from 0°, but the target source actually arrives 

from 10°. Despite this violation of the assumption of known target direction, with 

both modifications the two-microphone arrays exhibit very little direct target cancel- 

lation (less than 2 dB). However, the five-microphone array shows significant cancel- 

lation of the direct target, particularly in an anechoic environment. This is because 

the five-microphone system can steer four independent broadband nulls. Even though 

the modifications prevent adaptation when the target signal is strong, the system can 

steer multiple nulls and therefore directs one at the jammer and another at the mis- 

aligned target. Without the modifications, this additional null would be much deeper. 

This illustrates one of the major differences between the two- and five-microphone 

arrays; it will be discussed more thoroughly in Sec. 8.2. 

Two additional features of the results in Fig. 7.5 for the five-microphone array 

deserve mention. First, the most extreme direct target cancellation occurs at 0 dB 

input TJR. This effect was reported previously (Greenberg and Zurek, 1992) and 

occurs because the correlation method is more accurate and therefore more effective 

against misalignment at higher input TJR. Second, it appears that the shorter filter 

results in more target cancellation than the longer filter. This misleading result is due 

to the fact that even after 40 sentences, the five-microphone array with 1000-point 

filters has not converged completely. This long convergence time will be discussed 

in Sec. 7.4. For now, it is sufficient to note that performance obtained by such long 

convergence times is irrelevant in a practical device. 

Figure 7.6 shows the effect of the systems on target reflections for the two rever- 

berant conditions. The values of AT(TT) shown in Fig. 7.6 range from -4 dB to +1 

dB. Positive values of AT(TT) only occur for -20 dB input TJR, in which case the 

slight amplification of target reflections is a side effect of weights which have adapted 

to cancel the dominant jammer signal. Negative values of AT(Tr) indicate some can- 

cellation of target reflections.  In general, target reflections are subject to increased 
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Figure 7-5: Effect of systems on direct target, AT(T,i), versus direct-to-reverberant 
ratio with both modifications for three input TJRs. Anechoic results are shown at 
a direct-to-reverberant pratio of +20 dB. The arrays were either perfectly aligned to 
the straight-ahead target or misaligned by 10°. The systems tested were two- and 
five-microphone arrays with 100- and 1000-point adaptive filters. 
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cancellation at high. TJR, at lower direct-to-reverberant ratio, with longer filters, 

and with more microphones. These correspond to situations when the reflections are 

stronger and when the system has the capability to cancel them. 

Figure 7.7 shows the effect of the systems on the total target signal, and Fig. 7.8 

shows the effect of the systems on the jammer signal. Comparing the relative magni- 

tudes of the values shown in Figs. 7.7 and 7.8 indicates that AT(J) is the dominant 

component of the values of Gj shown in Fig. 7.4. The only exception to this is the 

misaligned, five-microphone array in an anechoic environment. In this case, the sys- 

tem produces significant cancellation of the direct target, as discussed above. This 

target cancellation is undesirable, but for these conditions the system provides even 

more cancellation of the jammer signal. For example, with L = 100 and the input 

TJR = 0 dB, Ar(T) = -19 dB and AT(J) = 31 dB, producing Gj = 12 dB. A real 

system will require automatic gain control to maintain output levels, so such target 

cancellation is tolerable as long as jammer cancellation exceeds target cancellation. 

The disadvantage is that requiring additional gain to restore the output levels also 

amplifies any uncorrelated noise, including microphone noise. It is also important 

to note that this target cancellation only occurred for the anechoic condition, and is 

drastically reduced in moderate reverberation. It is anticipated that this will not be 

a problem with real systems operating in real environments. 

Polar patterns 

Additional insight into the behavior of adaptive arrays is obtained by considering 

the magnitude response of the arrays as a function of frequency and source angle for 

distant plane-wave sources. For broadside arrays of omnidirectional microphones in 

free space, these responses are cylindrically symmetric about the array axis (90° - 

270°) and therefore completely specified by their response in the horizontal plane. 

The magnitude response of the array is generated by computing the response of 

the generalized sidelobe canceller to pure tones traveling as ideal plane waves with 

wavefronts orthogonal to the horizontal plane for each azimuthal angle. This results 

in a response that is a function of both angle and frequency. The broadband response 
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ratio with both modifications for three input TJRs. Anechoic results are shown at 
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is produced using intelligibility-weighted averaging, that is, taking the magnitude 

squared at the center frequency of each one-third-octave band, computing the level 

in dB, and applying Articulation Index weights to combine bands, as in (3.1). 

Figures 7.9-7.14 show the intelligibility-weighted polar patterns3 for the 24 con- 

ditions (two filter lengths, two array sizes, two array orientations, three levels of 

reverberation) with 0 dB input TJR shown in Fig. 7.4. In addition, the correspond- 

ing value of Gi from Fig. 7.4 is shown below each plot. Each polar pattern was 

computed from a single snapshot of the adaptive weights obtained after the system 

adapted on the entire sequence of 40 sentences and babble. 

Figure 7.9 shows responses of the two-microphone array in an anechoic environ- 

ment. The system has unity gain to signals arriving from 0°, as constrained by the 

generalized sidelobe canceller structure, and has formed a null in the direction of the 

jammer signal (45° for the aligned array and 55° for the misaligned array). Because 

the two-microphone system has one broadband degree of freedom, it can create one 

independent null. The second null (at 135° or 125°) is a result of the cylindrical 

symmetry of the broadside array. The polar pattern indicates that sources arriving 

from angles between 180° and 360° are slightly amplified by the system. However, 

these adaptive weights were obtained with no signals arriving at the array from those 

directions, so there was no reason for the system to prevent amplification of signals 

arriving from those directions. 

Figure 7.10 shows polar patterns for the five-microphone array in an anechoic en- 

vironment. For the most part, these patterns are similar to those seen in Fig. 7.9. 

One notable difference occurs in the misaligned case, where the five-microphone sys- 

tem steers a second independent null in the direction of the misaligned target (10°). 

This second null was discussed previously as the cause of the target cancellation seen 

in Fig. 7.5. 

In Figs. 7.9 and 7.10, the depth of the nulls in the jammer direction is not exactly 

equal to the corresponding values of AT( J) shown in Fig. 7.8.  This is because the 

3According to the convention for polar plots, positive angles progress counterclockwise from zero 
degrees. These plots are consistent with the definition of positive angles given in Sec. 3.2 if they are 
interpreted as being viewed from below the array. 
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polar pattern is based on a single snapshot of the adaptive weights, while AT(J) is 

determined from the spectra of output signals obtained while the adaptive weights 

were fluctuating. 

Figures 7.11-7.14 show polar patterns for the two- and five-microphone arrays in 

two reverberant environments. In interpreting these polar patterns, it is important 

to realize that the responses shown are for independent sources arriving from each 

angle, but that while adapting in reverberation, the weights are adjusted to minimize 

total output power, which may be accomplished by coherent addition of correlated 

sources (reflections) arriving from multiple angles. Comparing the two filter lengths 

in Figs. 7.11-7.14 reveals that shorter filters have deeper nulls, but the results in 

Fig. 7.4 indicate that the longer filter are associated with larger values of Gi. This 

is because the short filter minimizes the total output power by forming a null in the 

direction of the direct jammer, while the longer filter obtains additional benefits by 

using the adaptive weights to add coherent signals (arriving from different directions) 

out of phase, thereby cancelling the direct jammer as well as some jammer reflections. 

This is verified in Fig. 7.15, which shows impulse responses for the two-microphone, 

aligned array in moderate reverberation. The top panel shows the jammer-source-to- 

microphone impulse response for the left microphone. The amplitude of the direct 

wave is 0.04; it was clipped in the figure to show the reflections in more detail. The 

middle and bottom panels show the source-to-system-output impulse responses for 

100- and 1000-point filters, respectively, computed with the same snapshot of the 

adaptive weights used to generate the left half of Fig. 7.11. These impulse responses 

indicate roughly equal cancellation of the direct wave for the two filter lengths, and 

superior cancellation of reflections for the longer filter. 

In a hearing aid, motion of the listener's head will cause the array position to vary 

with respect to the sound sources. The width of the nulls shown in Figs. 7.9-7.14 

indicate that cancellation of the direct wave will be robust to slight head movements. 

However, as discussed previously, the longer filters provide improved cancellation in 

reverberation by adding coherent reflections out of phase. Cancellation of this type 

may be adversely affected by even slight head movements. Future evaluations with a 

161 



M=2,   moderate reverberation 
aligned misaligned 

90 90 

o o 
180 180 

270 270 

G I = 9.0 dB G I = 8.5 dB 

90 90 

o o o 180 

270 270 

G I = 21.7 dB G_l = 18.9dB 

Figure 7-11: Polar patterns showing the intelligibility-weighted response of the 
two-microphone system in moderate reverberation. The input TJR was 0 dB. Radial 
grid lines are in 10 dB increments, and the dashed line indicates 0 dB. Values of Gj 
are from corresponding conditions in Fig. 7.4. 
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Figure 7-12: Polar patterns showing the intelligibility-weighted response of the 
five-microphone system in moderate reverberation. The input TJR was 0 dB. Radial 
grid lines are in 10 dB increments, and the dashed line indicates 0 dB. Values of Gi 
are from corresponding conditions in Fig. 7.4. 
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real system should study the effects of head movements in order to assess the practical 

importance of the benefits of long filters in reverberation demonstrated here. 

Figure 7.16 shows polar patterns for the responses of the underlying fixed sys- 

tems. Included for comparison is a two-microphone array with the same span as the 

five-microphone array. These patterns are constant for all configurations of inputs. 

The polar plots show that the fixed systems are robust to misalignment (the main 

beam is fairly broad around 0°) and that in the presence of directional jammers, the 

two-microphone arrays provide gains of up to 5 dB, while the five-microphone array 

provides gains of up to 10 dB, where the actual attenuation depends on angle of 

arrival. 

In extreme reverberation, the performance of the fixed system is characterized 

by its gain against isotropic noise, which is equivalent to its directivity index. The 

intelligibility-weighted directivity index (3.11) is Dj = 1.7 dB for the 7-cm two- 

microphone array, Dj = 2.5 dB for the 16-cm two-microphone array, and Dj — 3.0 

dB for the 16-cm five-microphone array. It was found that two- and five-microphone 

arrays of the same length have similar values of Di because at low frequencies, the 

two-microphone fixed array with uniform weights has a relatively narrow mainlobe, 

while at high frequencies, the five-microphone arrays have lower sidelobes. Both 

a narrow mainlobe and low sidelobes increase the directivity index. For the array 

dimensions and frequency ranges considered here, the weighted frequency averaging 

results in comparable values of Z?j. 

The performance of the underlying fixed system can be improved by using direc- 

tional microphones (Soede et al, 1993a; Stadler and Rabinowitz, 1993). The fixed 

performance expected with directional microphones and the effect of directional mi- 

crophones on the adaptive system will be discussed in Sec. 8.3. 
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7.3.3    Summary of steady-state performance 

The steady-state performance of the systems investigated is summarized as follows: 

• Using both modifications always gives better steady-state performance than us- 

ing either modification alone or no modifications. Without the modifications, 

performance decreases dramatically with misalignment or increased TJR. With 

both modifications, the system is robust to misalignment and high TJR, and 

Gi is always positive. 

• Using a short primary delay prevents cancellation of the direct target due to 

target reflections. 

• With both modifications, the intelligibility-weighted gain, Gi decreases from 

20-30 dB in an anechoic environment to 3-10 dB in strong reverberation. 

• In an anechoic environment, performance is independent of filter length. In 

moderate reverberation, longer filters perform much better than shorter filters. 

• For the single jammer case studied, the five-microphone array has only a slight 

advantage over the two-microphone array. 

7.4     Transient performance 

7.4.1     Effect of modifications 

This section considers the transient performance of the algorithm with and without 

modifications. Initially, it is useful to summarize the following factors affecting con- 

vergence of the adaptive filters, many of which are derived from (4.70), (4.74), and 

(4.76). 

• The convergence time is proportional to the total number of adaptive filter taps 

(the product of the filter length and one less than the number of microphones). 
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• Using the sum method of normalizing the step-size parameter slows the conver- 

gence. At low input TJR, the convergence is initially slower than the traditional 

method by a factor of 2, and at high input TJR the convergence is slower by a 

factor proportional to the TJR. 

• Using the correlation method of controlling adaptation also slows convergence. 

Since the correlation method inhibits update of the adaptive weights on some 

iterations, the convergence time is longer by a factor equal to the reciprocal of 

the percentage of cycles for which the system actually adapted. 

• The convergence time is inversely proportional to the dimensionless step-size 

parameter, a, which was held constant in these simulations. 

• The convergence time is affected by the spread of the eigenvalues of the auto- 

correlation matrix of the reference signal. 

Section 7.3 considered the steady-state performance after the system was allowed 

to adapt on a sequence of 40 sentences. Figure 7.17 shows the intelligibility-weighted 

gain, Gi, as a function of sentence number for all of the misaligned conditions with 

input TJR of 0 dB, and Fig. 7.18 shows results for the same conditions with input 

TJR of +20 dB.4 Results are not shown for the aligned array, which demonstrated 

similar behavior except for predictable exceptions due to the ability of the system to 

cancel misaligned targets. 

The four curves on each plot in Figs. 7.17 and 7.18 indicate the transient per- 

formance of the four processing options (sum method of normalizing the step-size 

parameter, correlation method of controlling adaptation, both modifications, and 

neither modification). Because the effect of each modification individually is to slow 

convergence, it is expected that the system using both modifications will converge 

most slowly. This is confirmed by the results in Figs. 7.17 and 7.18. For many condi- 

tions, the systems converged sufficiently rapidly that performance is constant over all 

4The data for misaligned conditions shown in Figs. 7.2 and 7.3 correspond to the mean values of 
Gi for the last five sentences of the data shown in Figs. 7.17 and 7.18. 
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Figure 7-17: Transient performance shown by intelligibility-weighted gain, Gi, versus 
sentence number with and without the two modifications. The input TJR was 0 dB 
and the arrays were misaligned by 10°. Two- and five-microphone arrays were tested 
with 100- and 1000-point adaptive filters in three environments (anechoic, moderate 
reverberation, and strong reverberation). 

171 



anechoic 

20 

—i 
CD    0 

-20 
20 40 

misaligned, TJR=20dB 
M=2, L=100 

moderate reverberation strong reverberation 

20 

-20 

20 

-20 

20 
//~/vv N/- - "\ry 

20 

I 
CD    0 \ 0 

-20 

\ 

-20 

20 

M=2, L=1000 

40 20 

both modifications 
correlation method 
sum method 
no modifications 

20 

0 

-20 

40 

20 40 20 40 20 40 

20 

I 
CD    0 

-20 

20 

M=5, L=100 

0 
~-y\.yy\^^"\- 

20 40 20 40 

20 

-20 
20 40 

20 

CD    0 

-20 

syf *- "■* -s. — ' 

0 20 40 
sentence number 

M=5, L=1000 

20 ^c^^T 20 

0 V-.. -   ^~-.s 0 

■20 -20 
( )             20            40 

sentence number 
( )             20            40 

sentence number 

Figure 7-18: Transient performance shown by intelligibility-weighted gain, Gj, versus 
sentence number with and without the two modifications. The input TJR was +20 dB 
and the arrays were misaligned by 10°. Two- and five-microphone arrays were tested 
with 100- and 1000-point adaptive filters in three environments (anechoic, moderate 
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40 sentences.5 However, for those conditions where the convergence can be detected 

over successive sentences, the fastest convergence is obtained with no modifications, 

followed by one modification, and finally by the algorithm with both modifications, 

as expected. 

Obviously, the goal of these systems is to obtain the best possible performance; 

there is no advantage in converging quickly to poor steady-state performance. Figures 

7.2 and 7.3 showed that after converging to steady-state, performance is best with 

both modifications. Figures 7.17 and 7.18 show that even during the transients, use of 

both modifications provides the best performance for most conditions. The exception 

is two- and five-microphone arrays with 1000-point filters, when the input TJR is +20 

dB. In this case, the correlation method alone initially has a slight advantage over both 

modifications. However, this is irrelevant for a practical system since it occurs when 

the input TJR is +20 dB and the unprocessed speech is already highly intelligible. 

Although systems using both modifications typically converge more slowly to superior 

steady-state performance, during the transient they performs at least as well as faster- 

converging systems without both modifications. 

As stated above, the effect of the correlation method of controlling adaptation is 

to increase the convergence time by a factor equal to the reciprocal of the fraction 

of cycles for which the system actually adapted. These percentages can be obtained 

empirically for particular test conditions. Figure 7.19 shows percent of cycles for 

which the system adapted when the correlation method was used. The trends are 

roughly the same for two- and five-microphone arrays and for aligned and misaligned 

arrays. When the input TJR is —20 dB, the system typically adapts at least 80% of 

the time, and when the input TJR is 0 dB, the system typically adapts 50-70% of 

the time. Therefore, when the input TJR is 0 dB or lower, the correlation method 

increases the convergence time at most by a factor of 2. When the input TJR is +20 

5The length of the first sentence is 3.4 seconds, and the average sentence length is 2.9 seconds. 
Although there was an onset transient within the first sentence, it was sufficiently short that it did 
not affect the average powers used to compute Gi for the entire sentence. For these conditions, 
quantifying the transient performance would require recomputing Gi for short segments of the first 
sentence. Individual inspection of the output waveforms for a number of these conditions revealed 
that systems using both modifications typically converged within one second. 
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dB, the system adapts on 20-30% of cycles. 

Next it is useful to consider trends in the transient behavior of the system using 

both modifications (solid lines in Figs. 7.17 and 7.18). When the input TJR is 0 dB, 

the system's ability to adapt quickly to new interference sources is likely to have a 

large effect on intelligibility. Figure 7.17 shows that when the input TJR is 0 dB, 

the algorithm converges by the end of the first sentence for most conditions. The 

exception is the five-microphone array in an anechoic environment. 

When the five-microphone array operates in the anechoic environment, the adap- 

tive filter has two modes that converge at different rates and have competing effects 

on Gj. One mode converges more rapidly and cancels the jammer, while the other, 

slower mode adapts to cancel the misaligned target. Since this second mode of adap- 

tation results in poorer performance, the fact that it converges slowly is actually an 

advantage. If temporal fluctuations of source and array locations in a real system 

prevented convergence of that second mode, it would actually be beneficial. 

The competing effects of these two modes are seen for the five-microphone array 

with L = 100, and can be better understood by considering the values of the quantities 

that comprise Gi (not shown). For this condition, Gi is initially 20 dB due to AT(J). 

As time passes, the value of Ar( J) rises to 30 dB, while the second mode converges 

to produce AT(Td) of approximately —20 dB, resulting in Gi near 10 dB. For the 

five-microphone array with L = 1000, Gi is roughly constant, but the algorithm is 

not actually converged. Examination of AT(Td) and AT(J) reveals that with the 

longer filter, both modes converge slowly and neither mode has reached steady-state 

at the end of 40 sentences. 

Compared to Fig. 7.17, the results shown in Fig. 7.18 are considerably less impor- 

tant for a practical hearing aid. As stated earlier, when the input TJR is +20 dB, 

the unprocessed signals are already highly intelligible. In this case, the magnitude of 

Gi is relatively unimportant as long as Gi is positive. Figure 7.18 does show that 

with both modifications, both two- and five-microphone arrays with 1000-point filters 

have relatively long convergence times. In both anechoic and moderately reverberant 

rooms, the convergence time is on the order of 10 sentences (30 seconds). Since source 
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Figure 7-19: Percent of time the system adapted according to the correlation method, 
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and array locations may not remain constant for that long in a real system, the full 

benefits may not be realized at high input TJRs. 

Because the convergence time is proportional to the total number of adaptive filter 

taps, it is expected that the 2-microphone array with 100-point filters will converge 

most quickly, followed by the 5-microphone array with 100-point filters, then the 

2-microphone array with 1000-point filters, and finally the 5-microphone array with 

1000-point filters. The simulation results match these expectations, best illustrated 

by the moderate reverberation conditions in Fig. 7.18. 

The transient values of Gi shown in Figs. 7.17 and 7.18 are for one target and one 

jammer adapting from the initial condition with all of the weights equal to zero. A 

real system is likely to encounter situations where the weights have adapted to one 

jammer configuration and then an additional jammer appears. If the new jammer 

comes from a direction where the system's gain is greater than 0 dB (as seen in Fig. 7.9 

and the upper half of Fig. 7.10), then this jammer may initially be more disruptive 

than it would be in the absence of the system. Therefore, there is some advantage to 

systems with a tendency to maintain the polar pattern less than 0 dB for all angles 

of incidence, for instance the five-microphone array with 1000-point filters as shown 

in the lower half of Fig. 7.10. 

7.4.2     Summary of transient performance 

The transient performance of the systems investigated is summarized as follows: 

• For many of the conditions studied, the system converged in less than 3 seconds. 

• Although the modifications appear to improve steady-state performance at the 

expense of slower convergence, even during transients the algorithm with both 

modifications performs at least as well as faster-converging algorithms without 

both modifications. 

• Although some conditions have extremely long convergence times (30 seconds 

or longer) these correspond to situations when the benefits of the system may 

176 



not be required (very high TJR) and to situations when the slower converging 

mode is detrimental (target cancellation). 

These results indicate that transient behavior of the modified algorithm appears to 

be sufficient for the current application, based on results of static test conditions. Of 

course the true test will come from field trials to see how listeners are affected by time- 

varying jammer configurations. If such tests indicate that the modified LMS algorithm 

developed here does not provide fast enough convergence, then it will be necessary 

to investigate other algorithms for adjusting the adaptive filter weights. A promising 

candidate is the fast affine projection algorithm (Gay, 1993) which provides relatively 

rapid convergence at low computational complexity. This algorithm is based on a 

generalization of NLMS and is implemented in the time domain, and therefore can be 

modified to include the correlation method derived in Ch. 5. Additional investigation 

is required to determine if this algorithm could also be modified to include the sum 

method derived in Ch. 4. 
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Chapter 8 

Discussion 

The simulation results presented in Ch. 7 provide answers to a number of important 

questions about the potential of adaptive microphone-array hearing aids. Clearly, 

these results indicate that the modified algorithm is sufficiently promising to warrant 

testing with normal-hearing and hearing-impaired listeners in laboratory tests and 

field trials. However, practical limitations, such as difficulty simulating headshadow, 

head movements and time-varying jammers, make the simulations inadequate for ad- 

dressing additional important issues. Two of those issues include the use of directional 

microphones and the number of microphones needed in a head-sized array. 

The discussion in this chapter first considers the interpretation of the intelligibility- 

weighted gain, Gj, used as a performance metric in Ch. 7. That is followed by 

discussions of the issues affecting the number of microphones needed in a head-sized 

array and the use of directional microphones. Finally, the nature of future laboratory 

and field tests are considered. 

8.1    Interpretation of intelligibility-weighted gain 

The intelligibility-weighted gain, Gi, is a useful measure for quantifying the effect of 

a speech transmission system (Greenberg et al., 1993). However, in judging systems 

intended for the hearing-aid application, it is necessary to consider the implications 

for speech intelligibility in interpreting the significance of improvements predicted by 
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Gz. 

The intelligibility of the system output will depend on many factors, including 

the difficulty of the source material and the degree of reverberation. One very impor- 

tant factor is the intelligibility-weighted target-to-jammer ratio of the system output, 

TJRjiOUt defined in (3.7). This quantity reflects the intelligibility-weighted target-to- 

jammer ratio of the input and the intelligibility-weighted gain due to the system, that 

is, 

TJR/,out = TJR^jn + Gi, (8.1) 

which is obtained from (3.8). 

For normal-hearing listeners, target speech is typically intelligible for TJRj = 0 

dB. As a result, when the input TJR1 is —20 dB, Gi must be roughly +20 dB to 

make the output intelligible. On the other hand, when the input TJR is +20 dB, 

the signals will be highly intelligible without any processing. In that case, positive 

values of Gi are desirable because the system should not degrade intelligibility, but 

the magnitude of Gj is relatively unimportant in terms of the intelligibility of the 

output. 

In the hearing-aid application, Gi and TJRj>out must be interpreted with respect to 

hearing-impaired listeners. Studies comparing speech reception thresholds of normal- 

hearing and hearing-impaired listeners have estimated that the disability of impaired 

listeners is equivalent to a reduction of 10-13 dB in TJR when the jammer consists 

of a single competing talker (Festen and Plomp, 1990; Larsby and Arlinger, 1994). 

Therefore, a system that produces a Gi of approximately 10 dB for moderate levels 

of input TJR is expected to provide significant benefit to hearing-impaired listeners. 

8.2    Number of microphones 

How many microphones should be used in a microphone-array hearing aid? There is 

no simple answer to this question because the number of microphones in the array 

1Because the input signals were approximately whitened, the unweighted input TJR corresponds 
to TJRj^n within 1 dB for the signals used here. 
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has a significant impact on many issues. These issues include cancellation of direc- 

tional sources, robustness of the underlying fixed system in extreme reverberation, 

complexity of implementation, and the cosmetic acceptability of a practical device. 

8.2.1     Directional jammers 

As discussed in Sec. 2.3.1, an M-microphone array can form M — 1 independent 

broadband nulls. As a result, any array (two or more microphones) will be effective 

against one directional jammer. The simulation results presented in Ch. 7 show that 

in the presence of a single jammer source, there is only a slight benefit to having more 

than two microphones. Previous work has shown that for infinite length filters, once 

the number of microphones exceeds the number of jammers, little or no additional 

benefit is obtained by adding more microphones (Peterson, 1989). The current simu- 

lation results indicate that for one directional jammer, this is true for finite filters as 

well. 

If the environment contains two independent jammers, an array with more than 

two microphones can steer nulls in the direction of both jammers, while the behavior 

of the two-microphone array depends on the relative jammer locations and levels. If 

the jammers have unequal powers, a two-microphone array will attenuate the stronger 

of the two jammers, because of the need to minimize total output power, but that 

attenuation is limited by the need to avoid substantial amplification of the weaker 

jammer. If the jammers are of equal power and are not located such that the single 

available null can effectively attenuate both sources, the two-microphone array will 

perform comparably to the underlying fixed beamformer. 

In the presence of a large number of independent, directional jammers, these the- 

oretical considerations suggest that increasing the number of microphones will always 

improve performance. However, for head-sized arrays and realistic levels of sensor 

noise, the incremental improvement is negligible beyond 4-6 microphones (Peterson, 

1989). This is presumably because for the frequencies and dimensions of interest, 

additional microphones result in spatial oversampling. The current work considers 

five-microphone arrays due to this limitation and also to facilitate comparison with 
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other work on microphone arrays for hearing aids (Soede et a!., 1993a,b; Hoffman et 

al, 1994; Stadler and Rabinowitz, 1993). 

The simulation results presented in Ch. 7 also demonstrate one disadvantage of 

additional microphones. If the number of microphones exceeds the number of inde- 

pendent jammers by two or more, then the system has more degrees of freedom than 

required to direct nulls at all of the jammers. In this case, if the target is misaligned, 

an unused degree of freedom may be used to direct a null at the misaligned target. 

The interaction between the number of microphones and the number of jammers 

discussed above could be demonstrated using multiple jammers in computer sim- 

ulations similar to those described in Ch. 7. However, designing such simulations 

to provide results meaningful to the hearing-aid application is not possible due to a 

lack of information about commonly encountered acoustic environments. How often 

do listeners encounter more than one directional jammer? When multiple jammers 

do exist, what are their angular distributions and relative power levels? Future work 

should either address these questions before simulating multiple jammer environments 

or proceed directly to building portable microphone arrays for evaluation in a variety 

of real acoustic environments encountered in everyday activities. 

8.2.2    Reverberation 

It is also important to consider the effect of the number of microphones on per- 

formance in the presence of extreme reverberation. As discussed in Sec. 7.3.2, the 

performance of adaptive systems approaches that of the underlying fixed system with 

increasing reverberation. Also, for the array dimensions and frequency ranges con- 

sidered here, the number of microphones alone does not have a substantial impact 

on the intelligibility-weighted directivity for broadside arrays with uniform weights. 

Therefore, in extreme reverberation, the adaptive system performance measured by 

Gi will approximate the fixed system performance predicted by Di, which is not 

affected by the number of microphones. 

A consideration neglected in the previous discussion of fixed array performance is 

the noise sensitivity, which is a measure of robustness of fixed systems (Stadler and 
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Rabinowitz, 1993). In general, when arrays with different numbers of microphones 

provide the same level of intelligibility-weighted directivity (Dj), the array with more 

microphones will have lower noise sensitivity. For broadside arrays of omnidirectional 

microphones with uniform weights2 the noise sensitivity is ^ for all frequencies, that 

is, —3 dB for the two-microphone array and —7 dB for the five-microphone array, 

relative to 0 dB for a single omnidirectional element. This indicates that the fixed 

five-microphone array is more robust to any noise that is uncorrelated between micro- 

phones, including internal sensor noise, gain mismatch, and microphone placement 

error. These sources of error were not considered in Ch. 7, although target misalign- 

ment was included in the simulations. 

Another issue to consider is the robustness of the underlying fixed array in the 

presence of headshadow. The design and analysis of fixed arrays is based on the 

assumption that the array is in free space, while the application requires that the array 

be worn on the head. Soede et al. (1993a) showed that although polar patterns are 

substantially different for array responses measured in free space and on a mannikin, 

the frequency-dependent directivity indices are comparable. In particular, for a 10- 

cm endfire array of five cardioid microphones along the temple of eyeglass frames, 

the directivity index was about 1 dB lower when the array was on the head, relative 

to free space. For a 14-cm broadside array along the front of eyeglass frames, the 

directivity index was similar for measurements made in free space and on the head. 

For the broadside array, some frequencies showed improved directivity because the 

head provided additional attenuation of sources arriving from the rear. Future work 

should consider comparable two-microphone arrays to determine if the number of 

microphones affects the robustness of fixed arrays to headshadow effects.3 

2This corresponds to the underlying fixed array for the systems considered in Ch. 7. 
3It has been shown that two-microphone adaptive arrays are robust to the effects of headshadow 

(Greenberg and Zurek, 1992). 
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8.2.3    Summary of advantages of two- and five-microphone 

arrays 

Based on the results of computer simulations, it is not possible to recommend the 

number of sensors required in a microphone-array hearing aid. However, the relevant 

issues are the following. 

The five-microphone array is 

• more effective against multiple jammers, and 

• more robust in extreme reverberation (due to lower noise sensitivity of the 

underlying fixed beamformer). 

The two-microphone array is 

• less susceptible to target cancellation for the same number of jammers, 

• simpler to implement (in both hardware and software), and 

• more cosmetically acceptable (two ear-level devices rather than five elements on 

eyeglass frames or a headband). 

Some of the advantages (and disadvantages) of two- and five-microphone arrays 

could be combined in a system that uses the average of five microphone signals for 

the primary channel, and the difference between two of those signals as the input to 

a single reference channel. Such a system would combine the robustness of a five- 

microphone fixed system with the resistance of the two-microphone system to target 

cancellation. It would also require less computation than the five-microphone system 

with four reference channels. However, it would still require the user to wear an array 

of five microphones and would not steer independent nulls against multiple directional 

jammers. Even so, such a system may be appropriate if future studies indicate that 

the increased robustness of a five-microphone array is required and that multiple 

directional jammers are rarely encountered in everyday listening environments. 
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8.3    Directional microphones 

The motivation for using directional microphones in microphone-array hearing aids 

is the desire to improve jammer cancellation, particularly in extreme reverberation. 

Since the performance of an adaptive system approaches that of the underlying fixed 

system in extreme reverberation, an obvious approach is to maximize the directivity 

of the underlying fixed system. The design of fixed arrays for maximal directivity 

has been studied extensively in the context of the hearing-aid application (Soede et 

al., 1993a,b; Stadler and Rabinowitz, 1993; Kates, 1993). One way to improve the 

directivity of fixed arrays is the use of directional microphones. Other researchers 

have also considered the use of directional microphones in adaptive arrays (Weiss, 

1987; Schwander and Levitt, 1987; McKinney and DeBrunner, 1994). 

The theoretical polar patterns of cardioid, supercardioid, and hypercardioid mi- 

crophones, which are independent of frequency, are shown in Fig. 8.1. The directional 

microphones provide a gain of 0 dB to straight-ahead target sources and attenuate 

jammers arriving from all other directions. For directional jammers, the amount of 

attenuation depends on the angle of arrival. Figure 8.1 shows that a jammer arriving 

from 45° is attenuated roughly 2 dB by all three directional microphones, while a 

jammer arriving from 90° is attenuated 6 dB, 9 dB, and 12 dB by cardioid, super- 

cardioid, and hypercardioid microphones, respectively. For jammers approaching a 

diffuse field, such as in extreme reverberation, the amount of attenuation provided 

by a single microphone is given by its directivity: 4.7 dB, 5.6 dB, and 6.0 dB for car- 

dioid, supercardioid, and hypercardioid microphones, respectively, where all values 

are relative to 0 dB for a single omnidirectional microphone. 

Stadler and Rabinowitz (1993) studied fixed systems based on omnidirectional 

and directional microphones in 14-cm broadside arrays and 11-cm endfire arrays. 

They considered arrays of two to seven elements and various methods of selecting the 

fixed weights. Their results for broadside arrays show that regardless of the type of 

microphone, the more complex weighting schemes provide only slight improvements 

in directivity over uniform weights, and at a cost of increased noise sensitivity. That 
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microphone type 

number of microphones 
1                 2                   5 

Di    tfj Di       */ Di       $/ 

omnidirectional 
cardioid 
supercardioid 

0.0   0.0 
4.7   7.9 
5.6   5.3 

2.5   -3.0 
7.1      4.9 
7.8      2.3 

2.6    -7.0 
7.1      0.9 
8.1    -1.7 

Table 8.1: Values of intelligibility-weighted directivity, Di, and intelligibility-weighted 
noise sensitivity, \f j, both in dB, for a single microphone or a 14-cm broadside array 
with uniform weights. All values taken from Stadler and Rabinowitz (1993), except 
those for a two-microphone array of omnidirectional elements, which were computed 
using equivalent methods. 

result indicates that obtaining the primary channel from the mean of the microphone 

signals (uniform weights) is sufficient in the current application. 

Stadler and Rabinowitz (1993) calculated intelligibility-weighted directivities, Di, 

and noise sensitivities, $j, for 14-cm broadside arrays of two and five elements using 

uniform weights with omnidirectional and directional microphones.4 Table 8.1 sum- 

marizes values relevant to the current discussion. These results show that for fixed 

arrays of constant length, additional microphones have little effect on directivity, but 

do improve the noise sensitivity, as discussed in Sees. 7.3.2 and 8.2.2. Clearly, using 

either cardioid or supercardioid microphones instead of omnidirectional ones provides 

substantial improvements in directivity, with tolerable levels of noise sensitivity. 

It is also necessary to consider the effect of directional microphones on the per- 

formance of the adaptive system against directional jammers. Obviously, the use of 

directional elements will have a large and beneficial effect against jammers arriving 

from behind, because they eliminate the front-back symmetry of broadside arrays. As 

discussed above, the directional elements have no effect on the target signal and at- 

tenuate directional jammers by an amount that depends on the angle of arrival. That 

attenuation is effectively a shift in the TJR of the input signals seen by the adaptive 

system. For jammers arriving from forward directions, directional elements will shift 

*In that work, the microphones referred to as hypercardioids are actually supercardioids. 
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the input TJR by less than 6-12 dB, depending on the type of microphones used. 

However, since the modified algorithm based on the methods presented in Chs. 4 and 

5 is robust to changes in input TJR, the use of directional microphones should not 

have a large effect on the performance of the adaptive system. 

The computer simulations of Ch. 7 could be modified to incorporate directional 

microphones, but the results of those simulations can already be predicted. Because 

the jammer was located at either 45° or 55°, including directional microphones is 

equivalent to shifting the input TJR by 2 dB for the anechoic condition, and the results 

would not differ substantially from those obtained with omnidirectional microphones. 

For the reverberant conditions, the performance would improve to the extent that 

the directional microphones increase attenuation of reflections from all directions. In 

strong reverberation, the performance of the underlying fixed system would increase 

to roughly 7-8 dB, from the 1-3 dB shown by the rightmost V in each plot in Fig. 7.4. 

From the above discussion, it is clear that using directional elements in microphone- 

array hearing aids should have a beneficial effect on the performance in reverberation, 

with no cost in performance or processing. Therefore, arrays constructed for future 

evaluations should incorporate directional microphones. 

8.4    Laboratory and field tests 

The preceding sections have identified a number of issues that cannot be adequately 

investigated by computer simulations. Future work should focus on construction and 

evaluation of prototype systems with two- and five-microphone arrays of directional 

elements. The evaluations should be designed to study robustness to headshadow and 

head movements, to confirm the benefits predicted by the simulations, to assess the 

response in the presence of time-varying jammer sources, and to study the number 

of microphones required, that is, the number of independent jammers commonly 

encountered in real environments. 

The first set of tests to be performed with a real system should consider robustness 

to headshadow via physical measurements. For evaluating the underlying fixed sys- 
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tern, testing should compare the polar patterns and directivities with the array in free 

space and on a mannikin, as measured by Soede et al. (1993a) for a five-microphone 

array of cardioid elements. Similar measurements of polar patterns in free space and 

on a mannikin head should be made for adaptive systems in the presence of directional 

jammers in anechoic environments and in moderate reverberation. 

In addition, physical measurements should be made in the presence of head move- 

ments, to verify that the additional benefits of long adaptive filters can be obtained 

under realistic conditions, as discussed in Sec. 7.3.2. Previous work (Schwander and 

Levitt, 1987) has considered the effect of head movements on word recognition scores 

of normal-hearing subjects listening to speech processed by an adaptive noise canceller 

in a reverberant room. That system used an 800-point (80 ms) adaptive filter and 

obtained the reference input from a cardioid microphone mounted on the listener's 

head and facing toward the rear. Their results showed that although head movements 

reduce the effectiveness of the noise reduction process, that reduction is small relative 

to the benefit of the processing. Future work should include physical measurements 

to assess the effect of head movements on the generalized sidelobe canceller, in order 

to quantify the practical benefits of long filters in reverberation. 

The next step is to perform intelligibility tests with normal-hearing and hearing- 

impaired listeners. These tests should confirm the improvements predicted by the 

simulations in a controlled environment, that is, with known direct-to-reverberant 

ratio, input TJR, number of jammers, and jammer locations. In addition to measur- 

ing intelligibility, these tests should solicit the subjects' subjective impressions and 

attempt to quantify any other effects of the processing, such as ease of listening, 

annoyance, etc. Introducing time-varying jammers under these controlled conditions 

will also allow assessment of the algorithm's transient behavior and its effect on both 

intelligibility and ease of listening. 

Finally, construction of a battery-powered, wearable prototype will allow field tests 

with hearing-impaired listeners. These tests will assess the potential of the systems 

in real acoustic environments, rather than in a controlled laboratory setting. The 

listener will be exposed to time-varying jammers, various numbers of jammers, differ- 
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ent levels of reverberation, and a range of input TJRs. Quantifying the performance 

of systems outside of the laboratory will require developing a simple rating method 

for the listener to use. It will also be useful to develop a monitoring scheme that 

stores samples of the adaptive filter weights, the intermicrophone correlation, and 

other measures obtained by the system. This information can be used to determine 

how often the adaptive algorithm is significant5 and to provide information about the 

types and frequency of acoustic environments encountered by the listener in everyday 

activities. 

5 When the weights are close to zero, the adaptive system performance is not substantially different 
from that of the underlying fixed system. 
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Chapter 9 

Conclusion 

This work is part of a larger project concerned with the development of microphone- 

array hearing aids. As described in Ch. 2, previous work consisted of computing 

theoretical performance limits (Peterson, 1989) and evaluating practical systems (Pe- 

terson et al., 1990; Greenberg and Zurek, 1992). Those evaluations revealed several 

problems with the generalized sidelobe canceller and led to the development of two ad 

hoc modifications to the adaptive algorithm. The current work uses both theoretical 

analysis and computer simulations to formalize previously proposed modifications, 

specifies a modified algorithm for use in an adaptive microphone-array hearing aid, 

and demonstrates the benefits of that algorithm in a variety of simulated acoustic 

environments. Concurrent work (Welker, 1994) has considered adaptive arrays with 

binaural outputs, to prevent "tunnel hearing" imposed by a directional hearing aid 

with a monaural output. Future work will consist of implementing the proposed 

systems in real-time for evaluations in laboratory and field trials. 

The current work contains a thorough analysis of previously proposed methods 

for controlling adaptation and provides guidelines for parameter selection applicable 

in reverberation and for arbitrary numbers of microphones (Chs. 4 and 5). It also 

contains an analysis of the specific causes of target cancellation in reverberation and 

reveals that a simple parameter choice can solve this problem (Ch. 6). The results of 

Chs. 4-6 lead to specification of a modified algorithm for use in adaptive microphone- 

array hearing aids. 
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The modified algorithm was implemented and evaluated in computer simulations. 

Chapter 7 contains the results of those simulations, which serve three purposes. First, 

they demonstrate the effectiveness of the modifications and parameter choices deter- 

mined in Chs. 4-6. Second, they illustrate the levels of performance provided by 

practical systems using different filter lengths, i, and numbers of microphones, M, 

in a variety of acoustic environments. Finally, they identify issues for further inves- 

tigation with a real-time system in laboratory and field tests. Chapter 8 consists of 

a discussion of issues not resolved by the computer simulations and includes recom- 

mendations for future work. 

The result of this work is the specification of a relatively simple and robust broad- 

side adaptive array that is expected to provide a minimum of 7 dB interference 

reduction in a very reverberant sound field, and much greater reduction when the in- 

terference arrives predominantly via the direct path. In particular, this work supports 

the following conclusions: 

• The modified adaptive algorithm makes the generalized sidelobe canceller robust 

to the problems of misalignment and misadjustment, which occur predominantly 

at high TJR (Sec. 7.3.1). The modifications consist of the sum method of 

normalizing the step-size parameter in the LMS algorithm (Ch. 4) and the 

correlation method of controlling adaptation (Ch. 5). 

• Using a relatively short primary delay prevents cancellation of the direct target 

due to target reflections (Ch. 6). 

• Very large intelligibility-weighted gains can be achieved in relatively anechoic 

environments; the size of the gains decreases with increasing reverberation. 

Substantial benefits are often provided in moderate reverberation, particularly if 

relatively long filters (~ 100 ms) are used. In extreme reverberation, the perfor- 

mance approaches that obtained using the underlying fixed system (Sec. 7.3.2). 

This asymptotic performance can be improved by using arrays of directional 

microphones (Sec. 8.3). 
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• In many realistic environments, convergence of the modified algorithm is suffi- 

ciently rapid for processing speech signals (Sec. 7.4). 

• In the presence of a single jammer source, there is no advantage to using more 

than two microphones (Sec. 7.3.2). Additional investigations are required to 

determine whether more than two microphones are beneficial when operating 

in commonly encountered acoustic environments (Sec. 8.2). 

• Real-time processors must be constructed to confirm the benefits predicted by 

the simulations and to permit evaluation by human listeners under realistic 

acoustic conditions that include headshadow, head movements, and time vary- 

ing jammers (Sec. 8.4). 
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Appendix A 

The problem addressed in this appendix is the convolution of the approximate target 

pdf given by (5.16) with the jammer pdf given by (5.8), according to (5.15). Those 

equations are reproduced here using the unit step function, u(t), to indicate the ranges 

over which they are nonzero: 

£  (n\ _ (U(P ~ cos(fedsin fl„)) - u(p - 1))      1 
fM ~ 2(l-cos(JWsin0o)) 

+ 2S{P ~ l) (A>1) 

(u(p - cos(kd)) - u(p - cos(kdsin60))) 
Pi P      (f - e0)^f{kdY^t^^VT^7 

fPd\Y(p\Y) = L (^y^p) * /«((r + !»• (A-3) 

The two expressions to be convolved are determined by making the appropriate sub- 

stitutions in (A.l) and (A.2): 

Y + l \      (Y + l)(u(p-£-rcos(kdsm60))-u(p-£-))     1/ Y   \ 
/ptV   Y   P) 2^(1-cosffcd sin 0O)) 2   I*5 2^(1-cos(A;<i sin 0O)) 2   V      Y + l) 

(A.4) 

and 

f  ((Y + l) )= (F + 1)(1t(^ ~ F+i cos(fe<*)) ~ «(P ~ y^I cos(ferfsin fl0))) 
P       (| - öo)V(^)2 - (arccos((F + l»)2^. - {{Y + l)pf ' 

There are two cases that result from this convolution, with each case having three 

distinct regions.  Case A occurs when the jammer pdf is wider than the target pdf, 
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that is, when 
cos(kdsm80)-cos(kd) 

r <  —- = r0- (A.6J 
1 — cos(Kasmöo) 

Case B occurs when the target pdf is wider than the jammer pdf, that is, when 

cos(fc<fsJng0)-cos(fe(Q 
1 — cos(Kasmöo) 

For Case A, the three regions of interest are bounded by 

Y cos(/ed!sin0o) + cos(kd) 
Pi   =    y+~l  ^      ) 

_   Y + coS(kd) 
p2a —Y + l— ^      ' 

ycos(fcisinö0) + cos(fcdsinö0) ,, , ■   n N ,. ..^ 
P3a   =     - ^r— -  = cos(Adsinoo) (A.10) 

Y + cos(kd sin 60) , * ,., \ 
P4   =    ^j^ L-                                                             (A.ll) 

The conditional pdf is determined by substituting (A.4) and (A.5) into (A.3), giving 

fp&W)   =   JfPi((Y+1)po)fPt(p-^LPo)dpo 

Y + l 

2(f - 0o) 

in 
I J

Y+I 

 cos(fcd sin. 8Q ) 

■Xfo Po) dpO  [u(p -pi)-u(p- p2a)] 
Y+l 

Y 
tP~ Y+l CO"*" Sm°0> 

+ Y X(p, p0) dp0   [u(p - p2a) - U(p - p3a)} 
JP-Y+i 

cosffcdain 0Q) \ 

+ I      r+1       X(P' P°) dP° MP ~ P3°) ~ U(P ~ P^ ( '        (A-12) JP-Y+i J 

for Y < Yo, where 

X(p,po)   = 
yj{kdf - (arccos((r + l>o))2 ^/l - i(Y + ^PoY 

(        Y + 1^V)+S^-^-Y^T))-      (A-13) ^F(l-cos(A;dsinöo)) 
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Integrating (A. 13) produces 

— arcsm /— arc 
X(p,p0)dp0 =^7J (! 

*((r+Ppor 
kd 

y(l-cos(Wsinöo)) 
1 

y/(kdy - (arccos((r + l)p - Y))*y/l - ((Y + l)p - Yf 
+ C   (A.14) 

where C is any constant. Substituting (A.14) into (A.12) produces the result for Case 

A: 

fp&W) 
Y + l 

2F(f - ö0)(l - cos(fe*sin0o)) 

ir*    • (i <   — — arcsm [ - 
7T .    / arccos((Y + l)p — Y cos(kd sin 0O))" 

2 ~ arCSm [ kd [u(p - Pl) - U(p - p2a)} 

+ Y(l-cos(kdsm60)) 

jkd? - (arccos(^(y + 1) - Y)fjl - (p{Y + 1) - Y)2 

.    /"arccos((y + l)/o-F)>\ .    /arccos((Y" + l)p - Ycos(kdsm9o)Y 
+ arcsm I ; I — arcsm I ;—;  

\ kd J \ kd J 

[u{p - p2a) ~ U(p - p3a)} 

Y(l-cos(kdsm60)) + 
y/kd* - (arccos(p(y + 1) - Y)fyjl - {p(Y + 1) - Yf 

arcsm 
/arccos((r + l)p-F)> 

[u(p - pZa) u{p ~ P*)] \ ■ (A.15) 

Similarly, for Case B, the three regions of interest are bounded by 

Pi = 

P2b = 

Pzb = 

P4 = 

Y cos(fcrfsin 80) + cos(kd) 

y + i 

cos(Adsin 90) = p3a 

Y + cos(kd) _ 

y + i     ~P2a 

Y + cos(A;rfsin 6o) 

y + i      ' 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

The conditional pdf is again determined by substituting (A.4) and (A.5) into (A.3), 
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this time for Y > Y0, giving 

UY(P\Y) = //«((y+i)po)/p.(p- 

Y + l 

Y + l 
Y 

Po) dpo 

2(| -do) 
fp— Y+T cos(fcd sin fio ) 

liM 
X(p, po) dpo [u(p -pi)-u(p- p2b)} 

Y+l 
cog(Jbdsin gp) 

+ L(kl+1 x(p> p°) dp° MP - p™) ~ u<<p ~p3b^ 
cos(fc(JBin 6Q) I 

+ /    r+1     X(p,po)dpo[u(p-p3)-u(p-Pai)}\.      (A.20) 

which is identical to (A. 12) except for the limits on the second integral. Substituting 

(A.14) into (A.20) produces the result for Case B: 

IPMP\Y) 
Y + l 

2Y"(f -0o)(l-cos(JWsiii0o)) 

{ 
7T .    /arccos((y +l)p — Y cos(fcdsm 8Q)) 
 arcsin    —  
2 \ kd 

[u{p - pi) - U(p - p2a)] 

Y(l - cos(kdsmd0)) + 
jkd? - (arccos^y + 1) - Y)fjl - {p(Y + 1) - Yf 

.    (KCCOS{(Y + 1)P-Y)\ 
3108111 v ki J"öo [u(p - p3a) - «(p - PA)] } (A.21) 
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